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Abstract This review addresses the perspectives of Azolla as
a multifaceted aquatic resource to ensure ecosystem sustain-
ability. Nitrogen fixing potential of cyanobacterial symbiont
varies between 30 and 60 kg N ha−1 which designates Azolla
as an important biological N source for agriculture and animal
industry. Azolla exhibits high bioremediation potential for Cd,
Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission
from agriculture. In flooded rice ecosystem, Azolla dual
cropping decreased CH4 emission by 40% than did urea alone
and also stimulated CH4 oxidation. This review highlighted
integrated approach using Azolla that offers enormous public
health, environmental, and cost benefits.
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Introduction

Azolla species are the world’s smallest but most economically
important macrophytes which float on the water surface.
Azolla is unique, because it is one of the fastest growing plants
on the planet which can double the area it covers in just 5 to
10 days (Brouwer et al. 2015). This aquatic fern is native to
Central and South America and western North America and is
also widely established in the UK and Ireland and across
Europe, Morocco, southern Africa, Australia, New Zealand,

Hawaii, and Asia (Sadeghi Pasvisheh et al. 2013). It propa-
gates vegetatively by breaking up to form separate plants and
sexually by means of large female spores and tiny male
spores. It contains within its leaf cavities a symbiotic cyano-
bacterium Anabaena azolae. Anabaena draws down up to
1000 kg of atmospheric nitrogen per acre per year
(Carrapiço 2010). The nitrogen provides a natural fertilizer
for Azolla’s growth, freeing the plant from its reliance on soil
and enabling it to grow free floating on freshwater bodies.
Nitrogen is the element that most often limits food production
(Mosier et al. 2013). In rice, the amount of nitrogen absorbed
to produce grain is nearly constant at 19–21 kg N t−1 of whole
grain rice (Pittelkow et al. 2012). Therefore, yields can be
raised significantly by increasing the amount of nitrogen
available to crops. In order for agriculture to be sustainable,
nutrients must be replenished. Poor N recovery by rice causes
substantial economic loss to farmers and creates negative im-
pacts in the environment. The challenge, therefore, is to de-
velop new management techniques which can curtail the high
N losses and improve the poor N use efficiency by rice.

Due to intensive agriculture and industrialization to meet
the demands of growing population, humans have caused fra-
gility of ecosystem. The negative environmental impacts of
the current agricultural practices include soil degradation, wa-
ter depletion, contamination, loss of biodiversity, and climate
change. The warming of the earth’s atmosphere, due to the
accumulation of carbon dioxide (CO2) and methane (CH4),
promises to be the major issue of the next century. Fossil
fuel-based industrial development is the major cause of the
environmental imbalance; however, agricultural practices are
major factors with the capacity of adding to greenhouse gases
(the consequence of most modern production technologies) or
reducing them by environmentally friendly development
schemes. To reduce the impact, there is need of alternative
strategies for sustainable agriculture. The sustainable
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agriculture may be defined as any set of agronomic practices
that are economically viable, environmentally safe, and social-
ly acceptable.

Sustainability in agriculture can be achieved by (1) increas-
ing production to food grains to meet the demand of the pop-
ulation, (2) minimizing agricultural input to lower the cost of
agricultural production, (3) reducing inorganic or chemical
fertilizer use to lessen impact on environment and soil biodi-
versity that are key to the soil function, (4) developing tech-
nologies to use waste water resources for agriculture and other
useful purposes to meet the risk of problems associated to
water scarcity, (5) exploring bioremediation technologies to
utilize contaminated lands/waste lands for agriculture and oth-
er uses, (6) making use of degraded lands for agriculture
through eco-friendly techniques to reduce the relative abun-
dance of waste/degraded land, and (7) identifying strategies to
reduce greenhouse gas emission from agriculture. Organic
farming has been identified as the best strategy or alternative
method to meet the sustainability, which can address the mul-
tidimensional problems that is not only to increase the agri-
cultural output but also to maintain soil health and enable
biosphere function (Tuomisto et al. 2012). The organic agri-
culture focuses on Bliving soil^ on optimizing the use of bio-
logical processes and on avoiding the use of synthetic
chemicals and fertilizers.

Use of Azolla including Azolla pinnata, Azolla filiculoides,
and Azolla Africana as nutrient source for crops is promising
alternative strategies in agriculture. Although a lot of studies
has been carried out in the past using Azolla for soil and
agricultural management, there is lack of a comprehensive
review on its application for other global problems such as
bioremediation of pollutants and greenhouse gas mitigation.
Therefore, this review is outlined to address the sustainability
using Azolla. This review comprises of three major parts. The
first part discusses Azolla being used for fertilizer manage-
ment. The second part focuses its role toward the ecosystem
management including bioremediation of toxic trace metals
and organic pollutants. The third part identifies its application
to minimize greenhouse gas (GHG) emission from agriculture
as well as mitigation of atmospheric GHGs.

Azolla biofertilizer: perspective to agriculture
and ecosystem sustainability

Chemical nitrogenous fertilizer is produced by industrial nitro-
gen fixation, and during this process, for every single unit of
nitrogen fertilizer produced, two units of petroleum are re-
quired (Hamdi 1982). Depending on the type of nitrogen fer-
tilizer produced and the efficiency of the process, production of
a kilogram of N requires 51 to 68 MJ (1 megajoule=106 J) of
energy (McLaughlin et al. 2000). This expensive mode of pro-
duction, combined with the cost of transport, makes the

application of fertilizer too expensive for the majority of
farmers in developing countries. The utilization of
biofertilizers has several advantages over chemical fertilizers.
(1) Biofertilizers like Azolla are inexpensive, making use of
freely available solar energy, atmospheric nitrogen, and water.
(2) It utilizes renewable resources, whereas the production of
chemical fertilizers depends on petroleum, a diminishing re-
source. Therefore, biofertilizers are nonpolluting in nature (3).
Besides supplying nitrogen to crops, it also supplies other nu-
trients such as vitamins and growth substances for animals.
Azolla contains essential amino acids, vitamins (vitamin A,
vitamin B12, and beta-carotene), growth promoter intermedi-
aries, and minerals like calcium, phosphorous, potassium, fer-
rous, copper, and magnesium (Pillai et al. 2005). Dry weight
basis contains 25–35 % protein, 10–15 % minerals, and 7–
10 % of amino acids, bioactive substances, and biopolymers.
The crude protein content of leaf protein concentrate and re-
sidual pulp fiber of A. africana is 71.3 and 12.6%, respectively
(Brouwer et al. 2015; Fasakin 1999). (4) It also improves the
general fertility of the soil by increasing the organic matter in
soil, thus improving soil structure. Azolla utilization has been
identified to be more promising than inorganic fertilizers are in
minimizing greenhouse gas mitigation, in helping develop-
ment of economy, and employment opportunities (Denning
1989; Munasinghe et al. 2010), and in other soil and water
management functions Fig. 1.

The utilization of Azolla in rice-based cropping
system

Azolla anabaena is one of the promising biofertilizers for a
variety of crops, including rice (Joshi et al. 2012), wheat
(Babu et al. 2015), taro (Petruccelli et al. 2015), and soybean
(Sholkamy et al. 2015). Azolla is beneficial to wheat when
applied in a rotating rice-wheat cropping system (Gaind and
Singh 2015). The most suitable crop for the application of
Azolla is lowland rice, since both plants require a flooded
habitat. Azolla may be grown either as a monocrop or as an
intercrop with rice. Monocropping is done before rice cultiva-
tion or in a land to use it as source of green manure.
Intercropping is practiced by growing with rice and continu-
ously incorporated or harvested as and when required, provid-
ing an additional source of income during the entire period
from sowing to harvesting of paddy (Pabby et al. 2003; Ren et
al. 2008). As an intercrop, it is usually inoculated into the field
just after transplanting the rice and, after a period of growth, it
may be incorporated into the mud by manual mixing into soil
or allowed to die naturally by fungal rot or light starvation
(Aminifar and Ghanbari 2014). However, a combination of
applications is usually recommended (Bocchi and
Malgioglio 2010). Azolla application improves soil fertility
by increasing total nitrogen, organic carbon, and available
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phosphorus in the soil. The C/N ratio of the Azolla green
manure ranges between 9 and 10 and favors release of
NH4

+−Nwhen applied to rice soil. Among the Azolla species,
A. pinnata is efficient to release NH4

+−Nmore efficiently than
A. filiculoides and A. mexicana. Indian isolate of A. pinnata
released a maximum of 88 % NH4

+−N, whereas Vietnam
isolate recorded 77 % at 40 days of flooding. Azolla increased
soil available P to 26 ppm from 18 ppm of compost (Singh et
al. 1981).

The most effective application for increasing soil fertility
was first culturing Azolla as a monocrop in the fallow period
without diminishing the rice growing period, incorporating it
before transplanting, and subsequently culturing it as an inter-
crop with two incorporations (Xie et al. 2010). In the Niger
basin, A. pinnata was applied as an intercrop during 5 days
after transplanting and incorporating it and re-inoculating at
27 days after transplantation. Grain yield of rice increased to
27 % compared to urea when both were applied at
30 kg N ha−1(Kondo et al. 1989). Azolla improves soil phys-
ical structure when incorporated because of its high produc-
tivity, which supplies large quantities of organic matter to soil
(Subedi and Shrestha 2015). Use of Azolla as green manure is
also reported to improve soil porosity (3.7–4.2 %) and de-
crease the specific gravity of soils (Mandal et al. 1999). In a
pot experiment, Azolla at different levels applied to soil re-
duced the bulk density from 1.44 g cm−3 in the control to
1.34 g cm−3 in 80 g kg−1 soil treatment. Similarly, porosity
increased 6.52 % over unamended control (Awodun 2008).
Another benefit of applying Azolla as a biofertilizer is that in
low-potassium environments, it has a greater ability to accu-
mulate potassium than rice does. Azolla can absorb traces of
potassium as low as 0–5 ppm from water, while rice requires

at least 8 ppm K for effective absorption. Thus, when the
Azolla decomposes, it acts indirectly as a potassium fertilizer
for soil (Van Hove and Nations 1989).

Anabaena Azollae strains can fix 30–60 kg N ha−1 in

Rice is a poor competitor with Azolla for available N early
in the growing season. Azolla effectively competes with
young rice plants for applied urea, capturing nearly twice the
urea N compared to the rice plants. Using 15N balance study, it
was clearly showed that the presence of Azolla leads to an
early reduction of N losses and an increased recovery of ap-
plied N by rice. However, a substantial fraction of the applied
N was locked up by Azolla leading to a reduction of the Azolla
biological nitrogen fixation (BNF). The remobilization of this
conserved N is of paramount importance for the final recovery
and grain yield at maturity. In another experiment, it was
established that around 65 % of the N immobilized by
Azolla was remineralized during the rice growing season,
whereby 28.7 and 42 % were taken up by the rice crop fol-
lowing the basal and second split application of urea, respec-
tively. This protective urea immobilization followed by the
subsequent re-mineralization contributed to the elimination
of NH3volatilization from applied urea. Together with the in-
put from BNF by Azolla, these processes result in a synergism
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30 days (Wagner 2011). The fern is used to a great extent in
China (Shao et al. 2011), India (Raja et al. 2012), Bangladesh
(Ali et al. 2014), and Vietnam (Phong et al. 2011) as an im-
portant biological source to improve the N balance of rice
fields. The nitrogen fixed by the cyanobacterial symbiont is
either released upon decay of the incorporated Azolla
(Ortiz-Marquez et al. 2014) or leached into the standing water
from the growing Azolla (Veluci et al. 2006) and is available
for uptake by the rice crop.
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which is expressed in grain yield as well as in nitrogen yield of
the standing rice crop (Cissé and Vlek 2003).

This leads to the conservation of urea N in the system,
yielding a complete N recovery in the system early in the
growing season. It was found that, 6 weeks after fertilization
with 100 mg N pot−1, altogether, 50 mg of the applied urea N
was immobilized in the Azolla biomass (Cissé and Vlek
2003). Due to decomposition of dead Azolla biomass, N is
released and was available for rice absorption. Around tiller-
ing time, the rice plants are developed enough to compete with
Azolla for applied nitrogen (Cissé and Vlek 2003). In total, the
combination of Azolla and urea produced yields that were
10 % higher than without cover (de Macale and Vlek 2004).
Overall, using Azolla as a surface cover in combination with
urea can be an alternative management practice worth consid-
ering as a means to reduce NH3 volatilization and improve N
use efficiency as well as rice yields (de Macale and Vlek
2004). Azolla can act as a physical barrier to trap the liberated
NH3 and absorb the incoming solar radiation. Azolla thus
conserves N and suppresses algae-induced rise in floodwater
pH, and temperature in effect, influencing the chemical and
microbiological processes in the floodwater (Waddell and
Moore 2008). It significantly suppressed the rise in floodwater
pH by 0.9 to 1.4 pH units and maintained pH below 8.0
(Agami and Reddy 1990). Floodwater temperature is another
factor in the change of floodwater chemistry (Carpenter et al.
2011). There was a 5 °C difference with Azolla cover for the
wetland rice of the Philippines (de Macale and Vlek 2004).
The temperature effect might be more prominent in the tro-
pics, where air temperature is high. Floodwater temperature
has an indirect effect on ammonia volatilization by affecting
the partial pressure of NH3 (Cissé and Vlek 2003). The
fine-tuned system should time the Azolla inoculation such that
an Azolla cover is present at the time of fertilizer N applica-
tion. An initial cover of 50 %, 5–10 days before fertilizer N
application is sufficient to assure full coverage (100 % bio-
mass) at the time of N fertilization (Kern et al. 2007).

Evaporation of water is a major concern in flooded water
agroecosystem such as rice. By growing Azolla along with
rice water, evaporation is substantially reduced, a phenome-
non which is extremely desirable in many tropical rice farms
(Esiobu and VanHove 1992). Evaporation of water causes salt
concentration of soil to increase. It is reported that repeated
Azolla cultivation in the saline sea water over a 2-year period
reduced the salt content from 6 to 43 % (Shang et al. 1987).

Azolla biofertilizer for crops other than rice

Azolla can be beneficial to many crops other than rice.
Particularly, any agricultural crop that grows in a flooded soil
ecosystem can be a suitable target crop for Azolla, like taro
(Colocasia esculenta). In an experiment with the utilization of

A. mexicana on taro in the Cook Islands, Azolla was incorpo-
rated into mud at 20 t ha−1 and also applied to soil at
0.5 kg m−2 at planting of taro. It was found that the incorpo-
ration of Azolla into the mud and subsequent intercropping
with Azolla resulted in 54.6 % greater yields than the control,
while taro intercropped with Azolla in slowly flowing water
gave yields that were 87.3 % greater than the control. Both
Azolla treatments gave significantly higher yields than did
treatments fertilized with chemical nitrogen (40 Kg
NH4SO4-N ha−1) and phosphorus (10 Kg ha−1 P as triple
super phosphate) (Tekle-Haimanot and Doku 1995).

Azolla can be beneficial to wheat under rice-wheat
cropping system (Rana et al. 2015). Azolla grown as a
monocrop between the wheat and rice crops or applied as an
intercrop with rice has a significant beneficial effect on sub-
sequent wheat crops in rice-wheat cropping system.
Application of Azolla with Sesbania as green manure had
beneficial residual effects on subsequent wheat crops, raising
grain yield by 56–69 % over controls (Mahapatra and Sharma
1989). Azolla (especially fresh fronds) increased grain yield of
wheat, though straw yield and the number of tillers per plant
were largely unaffected. The method is also practiced in
Senegal (Van Hove and Nations 1989), where a succession
of vegetable crops is planted on the banks of Azolla ponds.
In the case of bananas, Azolla is applied as mulch on the soil
surface around the bases of the plants. When there is an over-
production of Azolla, it can be mixed with rice straw to form
compost. Incorporation of 6–24 t ha−1 of fresh Azolla into the
soil significantly increased its water-holding capacity, organic
carbon, ammonium-N, nitrate-N, and its available phospho-
rus, potassium, calcium, and magnesium, while it decreased
pH and bulk density. Azolla used as a green manure signifi-
cantly raised the yield of mungbeans (Nuraisyah 2002).

Other usages of Azolla in agriculture

Azolla is used as a food supplement fresh dried or ensiled for a
variety of animals, including pigs, rabbits, chickens, ducks,
and fish (Devendra and Leng 2011). Azolla fed to broilers
resulted in growth and body weight values similar to those
resulting from the use of mustard oil cake meal (Ashraf et al.
2015). In an experiment in Bangladesh, A. pinnata was tested
as a feed ingredient for broiler ration at 5–15 %. The compo-
sition of Azolla meal contained 25.78 % crude protein,
15.71 % crude fiber, 3.47 % ether extract, 15.76 % ash, and
30.08% nitrogen free extract on the air-dry basis. Live weight,
production number, and protein efficiencywere (P<0.01) sig-
nificantly improved at the level of 5 % Azolla meal in broiler
ration (Basak et al. 2002). In another experiment, effect of
Azolla (A. pinnata) meal in broilers was studied at Assam,
India. Conventional feed was replaced with 0, 5, 10, and
15 % Azolla meal. Broilers fed with 5–10 % Azolla meal
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showed significant body weight gain, feed consumption, and
fed efficiency to that of control group (Saikia et al. 2014). A.
filiculoides fed as partial replacement (0, 15, and 30 %) of the
protein in a soybean-based supplement to the pig in a com-
mercial farm in the Valle del Cauca in Colombia. Results were
at par with the expensive soybean-based meal. Therefore, re-
placing pig feed with Azolla was important in an economic
standpoint (Cherryl et al. 2013). Studies have been conducted
on the use of Azolla as feed to tilapia. Up to 30 % of fish
meal-based diet fed to Nile tilapia could be successfully re-
placed with dried Azolla meal (Youssouf et al. 2012). Growth
and survival of Labeo fimbriatus fry fed with feed containing
varied levels of dried Azolla (A. pinnata) was evaluated. The
control feed constituted 45 % groundnut oilcake, 45 % rice
bran, and 10 % finger millet flour as pelleting binder. Dried
Azolla powder was added into the control feed at 10–40 %
levels replacing the groundnut cake and rice bran proportion-
ately. Feed with 40 % Azolla reduced the cost of feed by 25 %
without affecting the yield (Gangadhar et al. 2015).

Isonitrogenous fish feed (crude protein 27.75–28.26 %) re-
placed with 40 % Azolla increased specific growth rate of
Labeo rohita by 0.67 than control (Panigrahi et al. 2014). A
rice-Azolla-fish culture system has proven to be quite success-
ful in Fujian, China (Lu and Li 2006). Rice-Azolla-fish culture
is of great significance in increasing freshwater fish yield. The
yield of fish has in general reached 225–750 kg ha−1 in China.
This system can result in eradicating weeds and harmful in-
sects, loosening soils, increasing dissolved oxygen, and im-
proving the fertility of paddy fields, so rice production may be
increased at between 8 and 47.3 %. This practice has the
characteristics of low cost, quick effectiveness, and better eco-
nomic returns and has been recognized as an additional source
of food and/or income in rural areas (Kangmin 1988). The
nitrogen-fixation role of this system increased the content of
organic matter, total nitrogen, and total phosphorus in the soil
by 15.6–38.5 % (Lu and Li 2006).

Azolla appears to be fit for human consumption. A
few researchers have experimented with the preparation
of Azolla in soup or BAzolla-meat^ balls as food for
man. However, such recipes are as yet unpublished
(Van Hove and Nations 1989). A book in China in the
16th century described the medicinal properties of Azolla
(Shi and Hall 1988). In Tanzania, Azolla has been re-
ported to be used effectively as a traditional cough medicine
(Wagner 1997).

Environment management using Azolla

Whenever good quality water is scarce, water of marginal
quality or even waste water will have to be considered for
use in agriculture. Use of wastewater in agriculture could be
an important consideration when its disposal is being planned

in arid and semiarid regions. From the viewpoint of irrigation,
use of marginal quality or waste water requires more complex
management practices and more stringent monitoring proce-
dures than when good quality water is used. Waste water is
characterized with high concentration of pollutants like heavy
metals, organic solvents, oil, xenobiotics, and other industrial
wastes. The source of waste waters are generally sewage, in-
dustrial effluents, agricultural runoff, and oil-spilled natural
water bodies.

Azolla can be used to manage such wastewaters by bring-
ing contaminant concentration to a lower level for further use
in agriculture (Rai 2007). A study conducted on growing
Azolla microphylla on municipal wastewaters revealed that
Azolla can act as a biofilter to remove pollutants. The biomass
produced can be used for fertilizing paddy fields or for other
applications, and polished wastewaters can be recycled for
irrigation purposes (Arora and Saxena 2005). Azolla exhibits
a remarkable ability to concentrate trace metals, petroleum
compounds, pesticides, pharmaceutical antibiotics, and dyes.
Azolla live biomass acts as potential bioaccumulator for toxic
pollutants, while the dead biomass regulates pollutant concen-
tration through biosorption. Hyperaccumulation of heavymet-
al involves several steps, such as transport of trace metal
across plasmamembrane, translocation of heavy metal, detox-
ification, and sequestration at cellular and whole plant level
(Rascio and Navari-Izzo 2011; Shah and Nongkynrih 2007).
Inmost aquatic plants, bioaccumulation is carried out bymetal
chelators which include phytochelatins, metallothioneins, or-
ganic acids, and amino acids. Metallothioneins has been char-
acterized in A. filiculoides grown under heavy metal stress.
These metallothioneins have low molecular weight (4–
10 k Da) and are cysteine-rich and metal-binding proteins that
bind metals via the thiol groups of cysteine residues
(Schor-Fumbarov et al. 2005). Azolla species tested for their
potential to bioremediate pollutants are listed in Table 1.

Bioremediation of hazardous pollutants

There has been considerable interest in the area of metal ac-
cumulation from aqueous solution by microbes and plants
(Elifantz and Tel-Or 2002). Trace metals cannot be degraded;
therefore, it must instead be extracted from contaminated sites
(Sahoo et al. 1992). Potential of many aquatic macrophytes for
trace metal removal has been investigated extensively (Cheng
2003; Dhir et al. 2009; Marques et al. 2009; Rai 2007).
Aquatic plants vary widely with respect to the amount of trace
metal accumulation indicating that phytoremediation potential
of aquatic plants is dependent upon the tolerance level and
toxicity of the plant genera or species employed in a particular
study. In addition, within a particular plant genus and/or spe-
cies, there is variation in accumulation potential for the same
heavymetal. Aquatic plants such asCeratophyllum demersum



accumulate Zn and Cd (Aravind et al. 2009). Lemnaminor has
been found to tolerate Cu (Kanoun-Boulé et al. 2009). In a
study, it was observed that Eichhornia crassipes was more
efficient in removal of trace metals (Fe, Zn, Cu, Cr, and Cd)
followed by Pistia stratiotes and Spirodela polyrrhiza
(Mufarrege et al. 2010).

Azolla carries out bioremediation of trace metals through
accumulation and biosorption. Heavy metals present in
wastewater can be managed by Azolla through bioremedi-
ation and are listed in Table 1. After bioaccumulation, its
biomass is easy to harvest as it desiccates quickly
(Sachdeva and Sharma 2012). Bioaccumulation properties
of Azolla make it a perfect candidate for bioremediation
systems (Cohen 2006), which can be used to treat polluted
waters or sewage water for agricultural use. Azolla species
vary in their potential to bioremediate trace metals. A.
pinnata removed 70–94 % of trace metals (Hg and Cd)
from ash slurry and chlor-alkali effluent in Singrauli
(India), and the concentration of these trace metals ranged
between 310 and 740 mg kg−1 dry mass in tissues of Azolla
(Rai 2008). In a hydroponic experiment, it was found that
Azolla grew under As concentration ranging from 29 to
397 mg kg−1 dry mass. Azolla caroliniana accumulated
highest As (284 mg kg−1 dry weight), while A. filiculoides
accumulated 54 mg kg−1 dry weight. A. filiculoides accu-
mulated trace metals such as Cd, Cr, Cu, and Zn at 10,000,
1990, 9000, and 6500 ppm respectively (Sela et al. 1989).
Different Azolla species vary in their absorption potential to
the t r ace me ta l s . I t was obse rved tha t h ighes t
bioconcentration potential of Pb2+, Cu2+, Mn2+, and Zn2+

was 94 % in A. microphylla, 96 % in A. filiculoides, 71 % in
A. pinnata, and 98 % in A. microphylla, respectively (Jafari
e t a l . 2 0 10 ) . A z o l l a b i oma s s p r o d u c e d a f t e r
phytoremediation can be used as source for bioenergy pro-
duction or bio-ore for recovery of marketable amount of
precious trace metal. The biomass left after the extraction
of heavy metals can be a good source of protein-rich feed
for animals or can be used as green manure. Much research
is still needed on metal transporters, biosorption, and their
regulatory genes. This will provide effective strategies to
utilize Azolla for treatment of multielement-contaminated
wastewater.

Bioremediation of petroleum products

Often oil spilled in land and water bodies are challenging
to clean up. The biodegradation of hydrocarbon pollutants
in open systems is limited by the availability of a utiliz-
able nitrogen source. Azolla can be used to resolve the
hydrocarbon pollution by indirectly stimulating microbes
that have potential to degrade hydrocarbons (Edema et al.
2010). In an experiment, A. pinnata as well as P.
stratiotes and Salvinia molesta were applied to plots con-
taining soil that had been surface-contaminated with die-
sel fuel (2.4 l m−2) and flooded with water. All plants
quickly died and bacterial flocs developed around the
dead A. pinnata fronds. After 16 weeks, diesel concentra-
tions in the plant-added plots were less than half those of
the control plot, and concentrations of xylenes and ethyl-
benzene were 50–100 times lower. In previous study con-
ducted in laboratory experiments, a consortium composed
of A. pinnata-derived bacteria displayed dense growth in a
4 % diesel-containing mineral salts medium and was
found to lower the concentration of aromatic compounds
by approximately 50 % after 19 days (Cohen et al. 2002).
It is concluded that the observed enhancement of diesel
degradation in the plant-added plots was due to the re-
lease of bacteria (bioaugmentation) and physiochemical
improvement of the plot conditions (biostimulation)
(Cohen et al. 2002).

Bioremediation of other pollutants

There are only a limited number of studies available that ex-
amined biological treatment of pollutants such as antimicrobi-
al agents and dyes. Antimicrobial drugs are widely used in
intensive farming (including aquaculture) both as feed addi-
tives and in mass therapy. They are administered as medicated
feed, slowly absorbed and eliminated with feces ending up
into the environment. After elimination from the body, these
drugs (and their metabolites) can maintain significant residual
activity and toxicity. In an experiment, three different floating
macrophytes such as water velvet, duckweed, and water let-
tuce (A. filiculoides, L. minor. and P. stratiotes) challenged

Table 1 Bioremediation of environmental pollutants by Azolla sp

Pollutants Components Azolla sp. tested for bioremediation Reference

Trace metals Cu, Cd, Pb, Ni, Cr, Hg,
As, Au, Zn

Azolla filiculoides, Azolla microphylla,
Azolla pinnata, Azolla caroliniana

Jafari et al. (2010); Kanoun-Boulé et al. (2009);
Mufarrege et al. (2010)

Petroleum Diesel hydrocarbon,
BTEX, Crude oil

Azolla pinnata, Azolla africana Cohen et al. (2002); Edema et al. (2010)

Antimicrobial pharmaceuticals Sulfadimethoxine Azolla filiculoides Forni et al. (2006)

Dyes Acid red 88 (AR88) Azolla microphylla Padmesh et al. (2005)

Environ Sci Pollut Res (2016) 23:4358–4369 4363



4364 Environ Sci Pollut Res (2016) 23:4358–4369

against antimicrobial drug, five sulfadimethoxine (S) concen-
trations (0, 50, 150, 300, and 450 mg l−1). Tests with and
without plants under the same environmental conditions
showed that in S-treated batches, a higher proportion of drug
was removed if the fern was present (from 56 % at S 50 to
88 % at S 450). Sulfadimethoxine’s accumulation capability
followed the trend as Azolla>Lemna>Pistia (Forni et al. 2006)
(Table 1). Biosorption potential of A. microphylla for acid red
88 from aqueous solution was investigated. The biomass ex-
hibited the highest dye sorption capacity at optimum condi-
tions of pH 3 and temperature 30 °C.

A. pinnata have shown potential usefulness in the treat-
ment of eutrophicated water system (Sutton and Ornes
1975). Floating macrophytes take up inorganic nutrients
mainly by the roots, as well as through the leaves. Azolla
rongpong is used to clean water bodies for its ability to
remove acid dyes such as acid red 88, acid green 3, acid
orange 7, and acid blue 15 from the contaminated sites
(Padmesh et al. 2005). Biosorption potential of Azolla to
various pollutants is regulated by pectin content. Pectin,
constituting 8–10.5 % (w/w) of the Azolla cell wall, is
shown to bind a major portion of ionic pollutants (Sr2+

ions). Treatment with pectinase reduced the binding capac-
ity of Azolla to Sr2+. Methylation of Azolla biomass, known
to block the carboxyl groups of pectin by esterification,
markedly reduced the Sr2+ binding capacity (Cohen-Shoel
et al. 2002). A study on the biosorption of basic orange
(BO) dye from aqueous solution onto the dried A.
filiculoides found that the maximum biosorption capacity
for BO was 833.33 mg g−1 at a temperature of 303 K, a
solution pH of 7.0, a biosorbent dosage of 5 g l−1 and a
contact time of 4 h. Fourier transform infrared spectroscopy
revealed that the amino, carboxyl, and hydroxyl groups
may be responsible for the biosorption of BO on the bio-
mass (Tan et al. 2010).

GHG mitigation by Azolla

Agriculture contributes three major atmospheric greenhouse
gases i.e., carbon dioxide (CO2), methane (CH4), and nitrous
oxide (N2O) (Cole et al. 1997; Houghton 2001). CO2 is re-
leased mainly from microbial decay processes or burning of
plant litter and soil organic matter decay (Janzen 2004; Smith
et al. 2008). CH4 is produced during organic material decom-
position which usually happens under oxygen-limited envi-
ronments, notably from fermentative digestion by ruminant
livestock, from stored manures, and from rice grown under
flooded conditions (Mosier et al. 1998). N2O is generated by
the microbial transformation of nitrogen in soils and manures
and is generally stimulated where available nitrogen (N) ex-
ceeds plant requirements, especially under wet conditions
(Smith et al. 2008).

Role of Azolla in CH4 flux from rice fields

Methane, themost abundant gaseous hydrocarbon in the atmo-
sphere, is an important greenhouse gas that may account for
approximately 15–20 % of the total current increase in global
warming (Bharati et al. 2000). Flooded soils planted to rice are
conductive to the production and emission of CH4 (Bharati et
al. 2000). With the intensification of rice cultivation, CH4

emission from this important ecosystem is likely to increase.
Studies have been carried to verify the effect of Azolla on CH4

efflux from rice fields (Table 2). In a field trial at Cuttack,
India, Azolla in different forms were applied with urea N to
provide a total of 60 kg N ha−1 (urea 30 kg N, Azolla 30 kg N).
Azolla was either incorporated as green manure at the begin-
ning of experiment or grown as dual crop in the standing water
along with rice crop. Cumulative CH4 flux followed the order
of urea>Azolla (incorporated)+urea>Azolla (incorporated
+dual crop) no N control > urea +Azolla (dual crop). Urea
alone increased CH4 emission possibly due to increased plant
growth and microbial metabolic activity in soil resulting to
higher CH4 emission (Ying et al. 2000; Zhao et al. 2015).
Higher CH4 flux was observed in Azolla incorporated plots
compared to no N control until 60 days. This difference was
attributed to C supplied by root lysis or exudates after
flowering (Schutz et al. 1991). Dual cropping of Azolla along
with urea N reduced CH4 flux by 40%when compared to urea
N alone (Table 2). The decrease in CH4 efflux in plots with
dual crop of Azolla could be related to the release of oxygen in
the standing water by the growing Azolla leading to less re-
duced conditions in the soil (Bharati et al. 2000). The role of
Azolla and cyanobacteria on CH4 production and oxidation in
a laboratory simulation experiments carried out using soil sam-
ples from rice fields (Prasanna et al. 2002). Moist soil core
samples (0–5 cm depth) collected from rice fields that had been
treated with urea in combination with a cyanobacterial mixture
plusAzolla microphylla affected distinctly more rapid decrease
in head space CH4 added at 200μL than did the soil cores from
plots treated with urea alone (30, 60, 90, 120 kg N ha−1) irre-
spective of the rate of chemical nitrogen applied for rice fields.
Higher CH4 oxidation was due to aeration by oxygen released
by the cyanobacterium. With their increasing role in CH4 ox-
idation, cyanobacteria and Azolla can play a major role in
mitigating CH4 emission.

The effect of different organic amendments on CH4 emis-
sion in rice field soil was investigated (Adhya et al. 2000).
Organic sources were applied to fields through incorporation
to provide 20 kg N ha−1. The treatments included urea N,
Sesbania + urea N, farm yard manure (FYM) + urea N,
Azolla+ urea N. Methane efflux per grain yield were 14,
37.70, 21.96, and 18.55 kg CH4 t

−1 grain yield respectively.
Although Azolla incorporation increased CH4 flux over that of
urea N alone, the effect was compensated with higher yield.
Organic matter (Azolla or Sesbania), when amended to



flooded soil, decomposes into readily mineralizable C that acts
as substrates for CH4. Data suggested that Azolla incorporation
can reduce CH4 efflux from rice field significantly compared to
other organic amendments. Few studies from China have re-
ported increase in CH4 efflux from rice field with Azolla dual
cropping. In these studies, at field and laboratory conditions
showed that growing Azolla as a dual crop could enhance
CH4 emission from rice fields (Ying et al. 2000) (Table 2).
Interestingly, it was found that the CH4 efflux from Indian soil
was lower than from soils originated from China. Soil proper-
ties like C and N content can be one of the regulatory factors for
the differential response of soils to the CH4 efflux. Several
studies have revealed the role of soil C content on the increasing
CH4 flux (Gollany et al. 2015). However, in the present context,
the reason of high CH4 flux in presence of Azolla particularly in
high C containing soils is less understood.

Atmospheric CO2 reduction by Azolla

To determine carbon fixing potential, Azolla was cultivated in
a tank and found that it fixed 0.33 t nitrogen and 1.86 t CO2 in
1 ha land within a 1-year period. It was estimated that by

enhancing Azolla cultivation in wet land paddy field of Sri
Lanka, 509,422 t of CO2 can be reduced from atmosphere
and can get 8934 t of nitrogen fertilizers every year
(Surenthiran and Loganathan 2012). Similarly, a study from
UK indicated that A. filiculoides sequestered 32.54 metric t
CO2 ha

−1 year−1 which was higher than grassland, forest, and
algae (Ben-Amotz 2007; Dawson and Smith 2007). To inves-
tigate the influence of elevated atmospheric CO2 concentra-
tions on Azolla growth rates, pot experiments were carried out
with growing Azolla under higher CO2 (380 ppm and
680 ppm) concentrations. Distinct increases in biomass pro-
duction (p<0.01) in response to elevated carbon dioxide con-
centrations were evidenced. Biomass of Azolla increased to
417 mg pot−1 over that of ambient (348 mg pot−1) in 16 days
(Cheng et al. 2010). Azolla is an interesting opportunity for
harvesting atmospheric CO2 (Brinkhuis and Bijl 2014). The
amount of biomass produced was corresponding to the CO2

concentration. Therefore, it is expected that growing Azolla in
agricultural practices will substantially reduce global CO2

budget (Table 3). The production and subsequent burial of
significant amounts of organic carbon might have affected
atmospheric CO2 concentrations and, as a consequence, glob-
al climatic conditions. Estimations reveal a mean sea surface

Table 2 Comparative assessment of greenhouse gas (CH4) efflux from rice field soils under different amendment practice of Azolla

Azolla incorporation methods Amendments Total soil
C (g kg−1)

Total soil N
(g kg−1)

Greenhouse gas
(CH4) flux/production
(kg ha−1)

References

Control No N or Azolla 7 0.8 95 Bharati et al. (2000)
Urea (60 Kg N) Control—No Azolla 155

Azolla incorporation (30 Kg N) +Urea
(30 Kg N)

Incorporated as Green manure 149

Azolla dual cropping (30 Kg N) + urea
(30 Kg N)

Grown along with crop 89

Azolla incorporation (30 Kg N) +Azolla
dual cropping (30 Kg N)

Applied both as green manure
and grown along with crop

105

Urea (170 Kg N) Control—No Azolla 16 0.8 140 Ying et al. (2000)
Urea (170 Kg N) +Azolla dual cropping Azolla applied at 156 g m−2,

grown for 1 year
230

Urea (170 Kg N) +Azolla dual cropping Azolla applied at 156 g m−2,
grown for 5 years

235

Urea (60 Kg N) No compost 7 0.8 14 Adhya et al. (2000))
Urea (40 Kg N) + Sesbania Sesbania aculeata (incorporated)

20 kg N
37.70

Urea (40 Kg N) + Compost FYM 20 Kg N 21.96

Urea (40 Kg N) +Azolla (20 Kg N) Azolla (incorporated) 20 Kg N 18.55

Urea (30 Kg N Ha−1) No Azolla 3 0.13 378 Prasanna et al. (2002)
Urea (60 Kg N Ha−1) 272

Urea (90 Kg N Ha−1) 326

Urea (120 Kg N Ha−1) 316

Urea (30 Kg N Ha−1) +Azolla Azolla incorporated at 1 t ha−1 210

Urea (60 Kg N Ha−1) +Azolla 202

Urea (90 Kg N Ha−1) +Azolla 210

Urea (120 Kg N Ha−1) +Azolla 198
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temperature of 13 °C before and after the Azolla interval and a
mean temperature of 10 °C during the Azolla interval
(Brinkhuis et al. 2006).

Regulation of N2O emission and NH3 volatilization
from agroecosystem by Azolla

N2O is produced in soil by two dissimilar energy-producing
microbial processes, nitrification and denitrification, and very
limited chemical process to contribute N2O emission in soil
(Li et al. 2015). Continuously flooded condition establishes
anaerobic environment which does not favor N2O emission.
Hence, flooded rice paddies are usually not considered to be
an important source of atmospheric N2O because N2O would
be rapidly reduced to N2 under such intensive anaerobic con-
ditions (Reay et al. 2012). But, we presume that it may indi-
rectly reduce N2O flux by reducing doses of inorganic N
sources. Inorganic N sources are directly responsible for N
loss and N2O emission (Table 2). Azolla as N source acts as
slow release nutrient for low N loss as well as N2O release to
atmosphere (Jeyapandiyan and Lakshmanan 2014). The most
important factor for NH3 volatilization or gaseous N (N2O)
loss is high available NH4 concentration and high pH of flood
water. Urease inhibitors and slow release products have been
used to decreases NH4 concentration in the flood water. The
influence of an Azolla cover in urea-amended plots applied at
the rates of 0, 40, 80, 120, and 160 kg N ha−1 as compared to
plots with urea only was assessed with respect to floodwater
chemistry, NH3 volatilization. Findings revealed that a full
Azolla cover on the floodwater surface at the time of urea
application prevented the rapid and large increase in floodwa-
ter pH associated with urea hydrolysis and the photosynthetic
activities of the algae. In the presence of an Azolla cover, the
mean floodwater pH was reduced by as much as 1.9 pH units,
and the maximum pH value was kept below 8.3. In contrast, in
the absence of a cover, floodwater pH rose above 8.5 and
reached a maximum of 10.1. The floodwater temperature
was lowered by asmuch as 5 °C. As a consequence, the partial

pressure of NH3, which is an indicator of potential NH3 vol-
atilization, was significantly depressed. The total N recovery
varied between 77 and 99 %. The N loss accounted for in the
Azolla-rice-soil system ranged from 0.01 to 23%.Whereas, in
the absence of an Azolla cover, N losses ranged from 21 to
49 % (Cissé and Vlek 2003; de Macale and Vlek 2004).

Socio economical evaluation of Azolla

The economic benefits of Azolla have been mostly studied
evaluating its use in different agricultural systems. Previous
study from rice fish Azolla system in India revealed that the
Azolla not only increased the yield of both rice and fish but also
increased benefit cost ratio. Adaptation of Azolla increased
benefit cost ratio to 1.88 from 1.57 to 1.77 in rice alone and
rice fish, respectively (Shanmugasundaram and Balusamy
1994). The biological potential of Azolla as a green manure
in rice production is great. Under favorable experimental con-
ditions, a layer of Azolla covering a 1-ha rice field releases 20–
30 kg organic N. The economic return from Azolla adoption
including cost savings in chemical fertilizer and weed control
is more than 10 % of the total non land cost for rice production
in areas where environmental conditions favor Azolla growth
(McConnachie et al. 2003). Azolla produces abundant biomass
and has 5–7 % protein respiration abilities, offer cost-effective
solutions for fodder security (more than 30–40 % cost saving),
and significantly reduces costs toward chemical farming.
Experiment was conducted to examine the prospects of
supplementing commercial feed with raw Azolla (A. pinnata),
on the production performance of Nicobari fowl. Azolla was
fed at 200 g per chick per day, in addition to 120 g of basal diet,
from 45 to 60 weeks. There was 30.73 % reduction in feed
consumption in Azolla-supplemented group that culminated in
0.01$ (0.76 Indian Rs) savings on feed cost per egg per day
over the control. The study tends to conclude that Azolla is a
good feed additive for sustainable egg production in Nicobari
fowl and proved to be profitable due to savings on feed cost
(Sujatha et al. 2013).

Table 3 Regulation of climate changing factors by Azolla

Climate change factors Remarks References

Energy saving Reduces energy use by minimizing inorganic fertilizer
production. Energy use is related to greater C foot print

McLaughlin et al. (2000)

N loss Minimizes N loss through NH3 volatilization Cissé and Vlek (2003); Phong et al. (2011)

Greenhouse gas mitigation CH4, CO2, N2O decrease Bharati et al. (2000); Janzen (2004); Prasanna et al. (2002)

Global temperature Reduces Global temperature by CO2 fixation Waddell and Moore (2008)

Carbon sequestration Incorporation of Azolla biomass in soil help C sequestration Surenthiran and Loganathan (2012)

Carbon credits Cultivation of rice with Azolla is a potential approach for
incorporating carbon credit markets reducing global carbon
foot print.

Brinkhuis and Bijl (2014)
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Concluding remarks

Azolla is a multi faceted biofertilizer in solving major prob-
lems that are of global concern. Azolla utilization deciphers
positive increase in the area of socioeconomic development,
agriculture productivity, bioremediation of toxic pollutants,
and climate change (Table 3). Utilization of Azolla in agricul-
ture improves social economic status by reducing the agricul-
tural input cost, generating employment opportunities for
small-scale industry involved in its propagation. Azolla can
reduce the energy demand required for fertilizer production,
hence, the environmental impact due to energy production.
Azolla’s leaf structure has evolved to provide a microenviron-
ment for the heterocyst-forming nitrogen-fixing filamentous
bacterium A. Azollae. This is the key to Azolla’s ability to
sequester enormous amounts of atmospheric CO2, an attribute
for carbon credit. Greenhouse gases like CH4, N2O emission
can be regulated from agriculture through dual cropping.
Azolla technology will ultimately benefit the rice farmers in
a positive and self-sustaining way. However, its application
for sustainability is still limited because of (1) social and po-
litical constraints which lack initiative programs to extend
subsidies or credits adapting this technology in most develop-
ing countries, (2) less awareness programs for the end users
like farmers, and extensive extension program is warranted,
and (3) scientific research programs to develop efficient
strains designed for specific purpose. Apart from these, its
propagation is restricted to tropics if strains to grow at low
temperature found it can be used in temperate climate. The
review suggests further collaborative efforts in research to
make the best use of this important natural resource for sus-
tainable agriculture.
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