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Abstract Reliable distribution maps are crucial for

the management of invasive plant species. An alter-

native to traditional field surveys is the use of remote

sensing data, which allows coverage of large areas.

However, most remote sensing studies on invasive

plant species focus on mapping large stands of easily

detectable study species. In this study, we used

hyperspectral remote sensing data in combination

with field data to derive a distribution map of an

invasive bryophyte species, Campylopus introflexus,

on the island of Sylt in Northern Germany. We

collected plant cover data on 57 plots to calibrate the

model and presence/absence data of C. introflexus on

another 150 plots for independent validation. We

simultaneously acquired airborne hyperspectral

(APEX) images during summer 2014, providing 285

spectral bands. We used aMaxent modelling approach

to map the distribution of C. introflexus. Although C.

introflexus is a small and inconspicuous species, we

were able to map its distribution with an overall
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accuracy of 75 %. Reducing the sampling effort from

57 to 7 plots, our models performed fairly well until

sampling effort dropped below 12 plots. The model

predicts that C. introflexus is present in about one

quarter of the pixels in our study area. The highest

percentage of C. introflexus is predicted in the dune

grassland. Our findings suggest that hyperspectral

remote sensing data have the potential to provide

reliable information about the degree of bryophyte

invasion, and thus provide an alternative to traditional

field mapping approaches over large areas.

Keywords Campylopus introflexus � Dunes �
Heathland � Imaging spectroscopy � Maxent � Moss

Introduction

Reliable distribution maps are crucial for the man-

agement of invasive plant species, but classical field

surveys are not always efficient for large areas. In

addition to being time-consuming and cost-intensive,

especially for large and remote areas and repeated

measurements, there is high observer-dependent vari-

ation (Fitzpatrick et al. 2009). In order to allow a cost-

efficient eradication, invasive species must be detected

as early as possible (Simberloff et al. 2013).

Advanced airborne remote sensing data can be a

viable alternative to field surveys as they cover large

areas and may enable the detection of species that are

difficult to map in the field (Asner 2013). As the

reflectance signal of plants is generally determined by

their biochemical and biophysical characteristics

(Asner 1997; Ollinger 2011), the invasive target

species must have some unique biochemical, struc-

tural or related phenological characteristics in order to

be detectable with remote sensing. To date, different

types of remote sensing data have been used for the

detection of invasive plants, depending on the char-

acteristics of the study species and the project goals

(see Huang and Asner 2009 for a review), from aerial

photos to multi- and hyperspectral satellite, airborne or

UAV data.

A very promising technique is to use hyperspectral

remote sensing data. Characterized by a large number

of spectral bands as compared to multispectral remote

sensing data, hyperspectral data are regularly used in a

wide range of fields such as geology, agriculture,

military surveillance and ecology. Hyperspectral

imagery is also the type of data that is most commonly

applied for invasive plant species (Bradley 2013), as

the large number of spectral bands allows differenti-

ation of even subtle differences in plant chemistry in

order to detect the target species.

A number of studies using hyperspectral data for

the detection of invasive plant species have relied on

characteristic features of the target species, such as

plant physiological traits, flower colours or phenology

to differentiate them from the surrounding vegetation.

For instance, Underwood et al. (2003) focused on

spectral bands related to water absorption to detect the

succulent species Carpobrotus edulis in coastal dune

scrub and maritime chaparral. Andrew and Ustin

(2008) were able to discriminate the weed Lepidium

latifolium in Californian wetlands by means of its

characteristic white flowers. Ishii and Washitani

(2013) used spring images to detect the weed Solidago

altissima in riparian wetlands before the seasonal

development of the indigenous tall grass species. Only

few studies so far have attempted to detect less

conspicuous species, such as the thistle Carduus

nutans, in a non-flowering state (Mirik et al. 2013).

Likewise, only very few studies (e.g. Lass et al. 2005)

have evaluated the potential of hyperspectral data for

early detection, probably because later invasion stages

where the invasive species are covering large areas are

much easier to detect from remote sensing data.

Our objective was to assess the potential of

hyperspectral remote sensing to detect the invasive

bryophyte species, Campylopus introflexus (Hedw.)

Brid, which was introduced less than 50 years ago to

the coastal dunes of the island of Sylt in Northern

Germany. More specifically, our goal was to develop

an approach that is easy to replicate for other study

areas and species, and to contribute to more efficient

monitoring of invasive plant species, as well as to

early detection. The invasive moss C. introflexus was

selected as target species as it is especially difficult to

map: it lacks conspicuous features such as colourful

flowers, individual plants are small, and patches are

often irregular and intermingled with other species.

This paper aims at answering the following ques-

tions: (1) How accurately can we detect an invasive

moss species with hyperspectral data? (2) Can we

detect early invasion stages as well? (3) Which

vegetation types within the study site are most

susceptible to invasion by C. introflexus?
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Materials and methods

Study site

The island of Sylt extends about 30 km in north–south

direction, but most parts of the island are only between

500 and 1500 m wide. Sylt is located in Northern

Germany (Fig. 1) and has a temperate climate with

medium temperatures of 1.7 �C in February and 17 �C
in August. The annual mean temperature is 9 �C, and
the annual precipitation is 717 mm with monthly

values between 45 and 89 mm [weather station

located in List, Northern Sylt, reference period

1981–2010 (DWD 2015)]. The soils in the dune areas

on the west coast are mainly loose immature soils and

podsolized regosols consisting of dune sand. Towards

the centre, mainly on the east coast, the dominating

soils are pseudogleys—brown earth and plaggen soils

(BGR 2009). Formerly being part of the mainland,

Sylt only took its current shape about 400 years ago.

Today, large amounts of sand are artificially deposited

on the west coast every year in order to counteract the

natural erosion and prevent land loss.

The dune areas on the island formerly consisted

mainly of shifting sand dunes without much vegeta-

tion cover, and grasses were first sown in the 16th

century in order to fix the dunes. After 1790, grass

planting with Ammophila arenaria became more

common and frequent, but targeted mainly the central

area around the islands main village. A fundamental

change in dune management occurred when the

Prussians took over the island in 1864. They intro-

duced and financed a range of new efficient measures,

among them the planting of tree species such as Pinus

nigra and Pinus montana in the dune valleys. Those

measures finally resulted in a fixation of most of the

dune areas and prevented the evolution of new shifting

dunes, only three of which have survived until today in

the northern part of the island (Bartels 2013). The land

use was also very important for the development of the

dune areas: until about 1950, the heathlands were

mostly grazed, and another common practice was to

remove the topsoil together with the vegetation, then

to put it in the stables or use it as fuel, along with any

kind of emerging woody vegetation.

The dunes located on the sea side (west coast) are

mostly natural aeolian atlantic dunes, while the east

coast was originally made up of pleistocene sands

deposited during the ice age. The dominant vegetation

is Empetrum nigrum heathland (Hieracio-Empetre-

tum, Calluno-Ulicetea), covering about two thirds of

the study area, followed by grey dunes vegetation

(Koelerio-Corynephoretea), making up about 13 % of

the total cover. Heathlands with high cover percent-

ages of Erica tetralix sometimes in association with

Narthecium ossifragum (Ericetum tetralicis, Oxy-

cocco-Sphagnetea) and areas dominated by A. are-

naria (Elymo-Ammophiletum, Ammophiletea) each

cover about 4 %. About 3 % consist of shifting dunes

and another 3 % are dominated by Rosa rugosa,

another invasive species (Leguan 2012).

Study species

The heath star moss, C. introflexus, is the only

bryophyte listed among the 100 worst invasive species

for Europe (Essl and Lambdon 2009). Native to the

southern hemisphere, the species was first observed in

Europe in 1941 in Sussex, UK (Richards 1963),

possibly introduced through its use as packaging

material for the import of goods. From England,

C. introflexus has spread over large areas in Europe, by

long distance dispersal of spores transported by wind

and dispersal of vegetative fragments through animals,

vehicles and other pathways.

Invading coastal and inland dunes, it leads to a

reduction of herbaceous plants in Corynephorus

canescens-dominated communities, such as Aira

praecox, Jasione montana and Viola canina, as well

as a decrease in the diversity of mosses such as

Dicranum scoparium, Hypnum cupressiforme and

Polytrichum piliferum and lichens such as Cladonia

portentosa, C. strepsilis, C. uncialis and Stereocaulon

condensatum (Rabitsch et al. 2016). Moreover, it may

change succession rates (Biermann and Daniels 1997;

Ketner-Oostra and Sýkora 2004). Other studies, par-

ticularly on alkaline soils, found that the effect on

lichens and other plant species might be only tempo-

rary (Hasse 2007; Klinck 2009; Sparrius and Kooij-

man 2012). However, the dense mats of C. introflexus

induce changes in soil formation, water balance, and

vegetation structure (Rabitsch et al. 2016) with

negative consequences for other dune species such

as carabid beetles and spiders (Vogels et al. 2005;

Schirmel et al. 2011). By reducing arthropod abun-

dance and diversity, it also contributed to a case of

local extinction of the insectivorous bird Anthus

campestris in the Netherlands (van Turnhout 2005).
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While Hahn (2006) concluded that a regeneration

of the affected sandy xeric grasslands is rather

improbable, other studies claimed that the effect is

rather local and only temporary, particularly on less

acidic sands with higher lime content. However, the

long-term effect on succession in dune ecosystems is

not yet clear (Hasse 2007). Possibly there will be a

cyclic succession with native bryophytes and lichens.

A succession to Calluna vulgaris heathland is likely in

the long term, particularly under future climate

warming. Equally unclear are the possible manage-

ment options for heavily invaded areas. One option

that has shown positive results is the deposition of

sand. Boxel et al. (1997) found that C. introflexus

disappeared when more than a few millimetres of sand

accumulated each year from blowouts. Research from

Ketner-Oostra and Sýkora (2000) showed that reacti-

vating blowouts and maintaining sandflow from

foredunes is a useful management option, and that

the addition of sand with neutral to subneutral pH,

some lime and relatively high base content also had a

positive effect on lichen richness. Furthermore, the

restoration of dynamic dunes with blowing sand is

known to support the native biodiversity in dunes

(Geelen et al. 2015).

In Germany, C. introflexus was first detected in

1967 in several locations (Neu 1968; Benkert 1971;

Düll and Meinunger 1989) and probably reached the

island of Sylt some years later. On the island of Römö

(Denmark), which is located North of Sylt, and is

connected to Sylt by car ferry, it was first found in

1970 (Frahm 1971). Although most of the dune areas

on the island of Sylt have been given the status of

nature protection areas between 1972 and 1980, and

access to those areas is largely prohibited today, the

high number of tourists visiting the island each year

and other human activities probably has had an impact

on the species’ spread in the past. The island of Sylt is

connected to the mainland by a train, which is also

transporting cars, and a ferry from Denmark, thus the

establishment and spread of C. introflexus was prob-

ably supported by those connections. So far, no map of

the species’ distribution or analysis of its impacts on

the island of Sylt exists.

Field data

For calibrating our distribution models, we surveyed a

total of 57 plots each covering 3 m 9 3 m where C.

introflexus was present in June 2014. The cover of all

occurring plant species including bryophytes was

recorded. For lichens, the total cover was estimated.

The plots were chosen using a stratified sampling

design taking into account all relevant vegetation

types as well as different stages of C. introflexus

invasion.

For validating our models, 150 additional randomly

located 3 m 9 3 m plots were recorded in October

and November 2014. For those plots, the percentage

cover of C. introflexus and of all species with more

than five percent of cover was determined. This

dataset contains both presence and absence plots of the

target species. For all plots, the GPS position was

Sylt, Germany

Legend

Calibration plots

study area

0 4 82
km

Fig. 1 Location of the North Frisian island Sylt (Germany) and

the 57 plots used to calibrate prediction models for the invasive

bryophyte C. introflexus based on hyperspectral remote sensing

data
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taken in the plot centre using a Trimble GeoExplorer

6000. The position average was integrated over at least

100 measurements.

Remote sensing data

The airborne hyperspectral data for Sylt were acquired

in a flight campaign on July 16th 2014, with a flight

height of 2270 m, between 12:21 and 13:13 local time.

The dataset was recorded in four flight lines covering

the northern and two flight lines covering the southern

part of the island, resulting in a total of 32 partly

overlapping images. Each image consists of 285

spectral bands recorded with an APEX (Airborne

Prism EXperiment) sensor covering a spectral range

between 412 and 2432 nm. Each individual pixel of

the image has the size of 1.8 m 9 1.8 m on the

ground. The Flemish Institute for Technological

Research (VITO) pre-processed the hyperspectral data

and included radiometric and geometric calibration,

correction of spectral smile effects as well as geomet-

ric and atmospheric correction (VITO 2014).

Once pre-processed, the 32 separate hyperspectral

images were combined in one mosaic. For the

overlapping areas of the separate images, the mean

value was calculated. For two images containing

clouds or clould shadows, the cloud-free image was

chosen. A total of 146 bands that remained after the

elimination of the bands disturbed by water vapour

signal were included into further analysis. All pre-

processing steps were performed in the R statistical

environment (R Core Team 2015) using the packages

‘‘rgdal’’ (Bivand et al. 2015) and ‘‘raster’’ (Hijmans

2015).

Data analysis

The data analysis follows the work flow shown in

Fig. 2. To define our study area, we used a biotope

map (Leguan 2012) to exclude all urban structures,

agricultural areas, roads, and areas with biotope types

unsuitable for our target species, such as salt marshes

(see Fig. 1). We also excluded the still sheep-grazed

areas at the northern tip of Sylt (Ellenbogen) from our

analysis, because of its rather different land use history

and resulting vegetation composition.

As a classification algorithm for mapping the

current distribution of C. introflexus across Sylt, we

used Maxent (Phillips et al. 2004). Maxent is a one-

class-classifier that separates the target species from

the background by using a maximum entropy

approach. We chose Maxent because it is a widely

used and state-of-the-art modelling tool in ecology

(Merow et al. 2013; Elith et al. 2011). In order to

model the species distribution, the approach requires

independent predictor or explanatory variables. These

variables are usually abiotic factors such as climate,

topography, light or soil conditions that are relevant

for plant physiology. In our model, we used the 146

spectral bands from our hyperspectral remote sensing

dataset as predictors. Maxent basically compares

probability densities. We know the conditional density

of the predictors at the presence sites, as well as the

unconditional density of the predictors across the

study area, but not the prevalence. Maxent makes an

estimate of the ratio between the two densities where

the distance between the density at the presence sites

and the density across the study area is minimized. The

model can then be transformed from an exponential to

a logistic model, providing us with the logistic output,

which is an estimate of the probability that the species

is present in a certain location. For detailed informa-

tion on the model functioning see Phillips et al. (2006)

and Elith et al. (2011).

As samples, we used the presence points of our

calibration dataset, containing 57 observed presences,

for which we extracted the spectra from the hyper-

spectral data. Additionally we extracted the spectra for

10,000 background samples that were randomly

Field dataRemote sensing
data

Validation

Pre-
Processing

Maxent 

Distribution 
maps

Calibration

Fig. 2 Work flow of the analyses for calibrating and validating

a Maxent model to map an invasive species using a combination

of field and remote sensing data
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drawn from the biotope types where C. introflexus

occurs or may potentially occur.

To assess the model performance we used the area

under the curve (AUC) statistic. AUC evaluates to

which degree the given distribution performs better than

a random distribution. It ranges from 0 (wrong predic-

tion) to 1 (perfect match), with 0.5 indicating the model

performance for a random distribution of presences.

To transform occurrence probabilities into pres-

ence–absence data, a threshold was defined, and the

final presence–absence map was created. The proba-

bility threshold can be selected manually for Maxent

(Phillips et al. 2006).We chose to work with a medium

high threshold, the ‘10 percentile training presence’

threshold, which selects the value as threshold above

which 90 % of the training samples are correctly

classified. The threshold was chosen subjectively.

Asexternalvalidation,weused the independentdataset

containing the 150 presence and absence plots, and

calculated the confusion matrix. From the confusion

matrix (Table 1), we calculated the OAC (overall accu-

racy), MCC (Matthews’s correlation coefficient), McNe-

mar test as well as the user’s and producer’s accuracy.

The overall accuracy (OAC) is the proportion of

true predictions among the sum of all values on the

confusion matrix (Eq. 1):

OAC ¼ TN þ TPð Þ
TN þ FN þ FPþ TPð Þ ð1Þ

where TN = true negatives, correctly predicted

absences; TP = true positives, correctly predicted

presences; FN = false negatives, mispredicted

absences; FP = false positives, mispredicted

presences.

The user’s accuracy is the proportion of correctly

predicted absences among the total number of pre-

dicted absences (TN/(TN ? FN)) or correctly pre-

dicted presences among the total number of predicted

presences (TP/(TP ? FP)).

The producer’s accuracy is the proportion of

correctly predicted absences among the total number

of observed absences (TN/(TN ? FP)) or correctly

predicted presences among the total number of

observed presences (TP/(TP ? FN)).

While the statistics above focus on the correctly

classified values (TP and TN), Mathew’s correlation

coefficient (MCC) also considers the misclassified

values (FP and FN) (Eq. 2):

MCC¼
TP �TN�FP �FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ � TPþFNð Þ � TNþFPð Þ � TNþFNð Þ
p

ð2Þ

The McNemar test focuses even more on the

misclassified values (FP and FN), and tests whether

their values are imbalanced. This balance is quantified

as the Chi value. If p is significant it means there is a

significant difference.

Aswe suppose that wemodel both actual distribution

and potential habitats due to the spectral similarity of the

co-occurring vegetation, we additionally used a two-

step modelling approach, which worked as follows:

First, themodelwas run as described above.Next, a new

set of 10,000 background points was selected from the

area containing all presences resulting from the first

modelling. Then, the model was run again.

Furthermore, we investigated on how the results

depended on the number of calibration plots in order to

assess how much field work is actually necessary and

if our approach is also applicable to species with a

more limited distribution, for example for species that

just started invading the area. We therefore compared

the outputs and performances of our Maxent runs

while reducing the number of observed presences

successively by five plots per run. In each step, we

randomly removed presences, each belonging to one

out of five different cover classes. For evaluation, we

Table 1 Schematic confusion matrix

Map prediction

Campylopus present (1) Campylopus absent (0)

Field observation Campylopus present (1) True positive (TP): correctly predicted

presences

False negative (FN): mispredicted

absences

Campylopus absent (0) False positive (FP): mispredicted

presences

True negative (TN): correctly

predicted absences
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used the different accuracy measures explained above

(AUC, OAC, users and producers accuracies, MCC

and McNemar test).

In order to investigate the susceptibility of different

types of coastal vegetation to invasion, we differenti-

ated the vegetation types according to the TMAP-code

(Trilateral Monitoring and Assessment Programme,

Petersen et al. 2014), a vegetation type classification

which aims to harmonize vegetation mapping across

theWadden Sea area across the Netherlands, Germany

and Denmark.We then calculated the amount of pixels

predicted to contain C. introflexus in each vegetation

type. For areas where more than one TMAP-code was

assigned within the biotope mapping of the island in

2012, we assigned 60 % of the area to the primary and

40 % to the secondary TMAP type.

Results

Maxent modelling

The overall accuracy of the Maxent model was

approximately 75 %, while Matthews’s correlation

coefficient was approximately 0.42 (see Table 2). The

FNs and FPs in the confusion matrix were relatively

balanced, according to the McNemar test. The AUC

value was about 0.872. The amount of correctly

classified presences (TPs) increases for high cover

percentages of C. introflexus (Fig. 3).

As a result of the basic Maxent modelling, we

derived a probability map and a presence–absence

map for C. introflexus, (Fig. 4), using all available 57

presence points, and the ‘10 percentile training

presence’ threshold. The probability map shows five

classes, three below and two above the threshold of

0.307, while the presence–absence map only shows all

areas above the threshold. The visual inspection of the

modelling results did not show any pattern or break-

line in between the different flight lines. The misclas-

sified validation plots were evenly distributed across

the island.

All bands considered important in the model were

located in the short wave infrared region (SWIR;

Fig. 5). The three most important ones were located at

1736, 1988 and 1996 nm, all relatively close to the

water absorption bands, making up about 40 % of the

permutation importance,which is ameasure of the final

contribution of the different bands to the model. Only a

few bands were located in the near infrared (NIR).

Table 2 Accuracy assessment of the distribution map of Campylopus introflexus within the coastal dunes on the North Frisian island

Sylt based on hyperspectral remote sensing and Maxent modelling

Map prediction

Campylopus present Campylopus absent Total Producer’s

accuracy (%)

Field observation Campylopus present 27 21 48 56.3

Campylopus absent 16 86 102 84.3

Total 43 107 150

User’s accuracy (%) 62.8 80.4

Overall accuracy (%) 75.3

Matthew’s correlation coefficient 41.8

McNemar v2 0.40 p 0.51

To generate the binary map, the ‘10 percentile training presence’ threshold of 0.307 was applied. For the McNemar test a p[ 0.05

indicates no significant difference between the proportions of FNs and FPs

Fig. 3 Rate of correctly predicted presences of the validation

dataset related to the cover percentage of the invasive bryophyte

C. introflexus observed in the field
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Two-step modelling

In the second run of the twostep modelling (re-

analysis based on a reduced background set) a

threshold of 0.371 (‘10 percentile training presence’)

was applied. It produced an AUC value of 0.758 and

the resulting overall accuracy did not change

compared to the one step approach. Mathew’s

correlation coefficient slightly decreased to 0.38.

This resulted in 95 out of 102 correctly classified

absences, but only 18 out of 48 correctly classified

presences, and while a smaller number of field

absences were wrongly predicted, about 30 field

presences out of 48 were not detected by the model

(see Table 3). The McNemar test confirmed that this

prediction was very unbalanced.

±(b) Presences(a) Occurence probability

0 4 8 mk2

Campylopus
introflexus

0 - 0.1

0.11 - 0.2

0.21 - 0.3

0.31 - 0.5

0.51 - 1.0

Fig. 4 a Probability map based on hyperspectral remote sensing

and Maxent modelling and b model-based presence–absence

map for the invasive bryophyte C. introflexus in the dune

vegetation on the North Frisian island Sylt (Germany). The

presence–absence map is derived from the probability map by

applying a probability threshold of 0.307. The background in the

detailed maps is a LiDAR-derived relief hillshade
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Percentage of Campylopus introflexus in different

biotope types

The model predicted that C. introflexus is present in

about 27 % of the pixels within our study area, which

corresponds to a total area of 6.5 km2. According to

our model predictions, the North of the island seems

slightly more invaded (31 %) than the South (26 %)

and the centre (22 %).

Our model predicted that C. introflexus occurs in

52 % of the dune grassland pixels (TMAP-Code X.5),

in 29 % of the dune slack heath pixels (H.3), in 25 %

of the dune heath pixels (X.6), and in 16 % of the

yellow dune pixels (X.4), see Fig. 6.

Reduced number of calibration plots

The reduction of the number of calibration plots from

57 to about 17 plots did not necessarily lead to a

decrease in prediction accuracy (see Fig. 7). However,

McNemar test showed that model results were highly

unbalanced when only 7 and 12 calibration plots were

used. Themodel using 27 calibration plots also shows a

highly imbalanced confusion matrix according to the

McNemar test, but this was probably due to the

relatively low value of the threshold for this model. A

visual comparison of the resulting maps revealed that

the general distribution pattern of C. introflexus does

not change much for all of the models with 12–57
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Table 3 Accuracy assessment of the distribution map of Campylopus introflexus within the coastal dunes on the North Frisian island

Sylt based on hyperspectral remote sensing and a two-step Maxent modelling approach

Map prediction

Campylopus

present

Campylopus

absent

Total Producer’s

accuracy (%)

Field observation Campylopus present 18 30 48 37.5

Campylopus absent 7 95 102 93.1

Total 25 125 150

User’s accuracy (%) 72.0 76.0

Overall accuracy (%) 75.3

Matthew’s correlation coefficient 0.38

McNemar v2 13.1 p 0.0003

To generate the binary map, a ‘10 percentile training presence’ threshold of 0.371 was applied. For McNemar test, a p\ 0.05

indicates a significant difference between the proportions of FNs and fFPs
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calibration plots. Only themodel with seven calibration

plots showed a very different pattern in the prediction.

Discussion

How well can we map Campylopus introflexus?

The results of our modelling approach based on

hyperspectral images show that it is possible to map

occurrences of C. introflexus in the dune areas of the

island of Sylt with an overall accuracy of 75 %. This

value is not extremely high compared to other studies

using remote sensing to map invasive plant species,

e.g. 93 % overall accuracy for Solanum mauritianum

(Atkinson et al. 2014), 79 % and 91 % for C. nutans in

preflowering and peak flowering state, respectively

(Mirik et al. 2013), or 84.4 % for S. altissima (Ishii and

Washitani 2013). However, taking into account the

size and the inconspicuousness of the study species,
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which mostly does not even covers a whole 1.8 m x

1.8 m pixel, and appears in very different forms and

variable patch sizes, sometimes in very small quanti-

ties below the heathland shrubs, our results are

considered sufficiently accurate.

The evaluation of the model with the independent

validation dataset showed that most of the false

negatives (FNs) are plots with less than 5 % cover of

C. introflexus (nine plots out of 21). Thismeans that the

model is not able to detect very low cover fractions,

which is not surprising as in those low cover plots C.

introflexus usually appears below or between other

species such as E. nigrum or C. vulgaris, and may thus

not significantly contribute to the overall reflectance

signal of the plot. Another fourmisclassified plots have

higher cover, but are located less than one pixel away

from predicted presences. This misclassification could

be related to spatial inaccuracies in field and remote

sensing data. This only leaves eight plots with medium

to high cover of C. introflexus, which are mainly plots

with a relatively high amount of E. nigrum and/or C.

vulgaris, where C. introflexus occurs in between and

below the other species. Therefore, the weighted mean

of the reflection signal of the plot is probably domi-

nated by the shrub signal.

This means that in practice, if using the maps for

further analysis or for management, only eight plots

with a significant cover of the target species would

be overlooked. As the suggested management

approach for C. introflexus (see introduction and

last section of the discussion) does not necessarily

require to precisely locate every single small

occurrence, we judge that our resulting error to be

within an acceptable range.

For the false positives (FPs), about four out of 16

plots have medium to high bare soil cover (white sand)

similar to many invaded sites, which could be the

reason for confusion. Another four plots are domi-

nated byA. arenaria, here the contribution of the white

sand to the overall reflection signal could also be

responsible for the overprediction. Yet another four

plots have heterogeneous vegetation cover. Here the

misprediction could be due to confusion with lichens

or bryophytes spectrally similar to C. introflexus. The

remaining four plots are mainly dominated by E.

nigrum, but do not have a high cover of bryophytes or

lichens. Here the most probable explanation is a

position uncertainty in combination with one of the

explanations above, as the high number of true

negatives (TN) proves that model mostly succeeds in

correctly classifying E. nigrum dominated areas

without C. introflexus as such.

The true positives (TPs) are plots with mostly

medium to high C. introflexus cover fractions of

between 5 and 100 %. As Fig. 3 shows, the model

accurately detects almost all high cover plots, but

makes more mistakes with decreasing cover percent-

ages of C. introflexus. So even if we are potentially

missing or overestimating some of the low cover plots,

the map still gives us a very good idea of the overall

distribution of C. introflexus on the island, which was

completely unknown before.

We therefore conclude that the map we produced

from remote sensing is a good alternative to a

traditional field mapping approach for C. introflexus.

One main reason is the difficulty to detect and

accurately estimate this species in the field: small

occurrences of the moss cannot be detected from a

long distance. Even standing directly on a plot, an

observer has to search carefully before all smaller

occurrences are detected or its presence can be safely

excluded. Another major obstacle to mapping C.

introflexus on Sylt from field observations is due to the

large size of the area. However, a major drawback to

the wide use of hyperspectral remote sensing data is

the high costs associated with flight campaigns (He

et al. 2011).

What are we actually modelling?

The general assumption behind our modelling approach

is thatwe canmap the actual distributionafter applyinga

threshold to the occurrence probability map. However,

the model is trained with mixed stands of the target

species and co-occurring vegetation that result in a

mixed spectral signal. It is thus possible that we model

not only the actual distribution, but also, partly, potential

habitats. Due to a similar co-occurring vegetation,

potential uninvaded habitats might have a reflectance

signal that is very similar, especially to the plots with

low C. introflexus cover. In order to verify to which

extent our modelling results are correct and represent

real presences, we validated against an independent

dataset.

We tested a two-step modelling approach in order

to differentiate between actual distribution and poten-

tial habitats, which are presumably both included in

the basic modelling approach. Here the presumption is
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that by running the model again on a background that

is restricted to the results of the basic modelling, we

can separate potential habitats from actual distribu-

tion, modelling only the latter. As the results show, the

modelled presences are much more restrictive than the

presences predicted by the basic modelling, and thus

probably underestimate the real presences of C.

introflexus.

A reason could be that the model is searching for

reflectances similar to the ones in the calibration

dataset. However, the model does not know how

exactly the spectral signal of C. introflexus looks like,

and will thus onlymodel any reflectances similar to the

mixed pixels containing a certain amount of C.

introflexus. As shown in the analysis of the misclas-

sified validation plots of the Maxent modelling, those

include a variety of different types of plots, and we

cannot say if they are classified incorrectly because of

similar reflectances of potential habitats or because of

similar reflectance signals of the co-occuring species.

This could be especially true for plots with high covers

of lichens and some mosses similar to C. introflexus in

terms of structure, biomass etc. Presumably, the two-

step modelling further narrows the similarity criteria,

which is further restricting the presences, not neces-

sarily to true presences but to similar reflectance of all

sorts. We conclude that the two-step modelling did not

provide a further improvement of the prediction in the

case of our study species.

Another answer to the question of what we are

actually modelling can be found in the band regions of

the hyperspectral remote sensing data: which are the

most important single bands and band regions indi-

cating C. introflexus presences? The large majority is

located in the short wave infrared (between 1300 and

2500 nm). This region is dominated by strong water

absorptions, which not only affects certain bands, but

has a carry-over effect on the region between the main

absorption bands (Kumar et al. 2002). Plots dominated

by C. introflexus have higher reflectances, indicating a

lower water content of the plants. Furthermore, this

spectral region is characterized by absorptions of

biochemical compounds such as lignin, cellulose,

starch, proteins and nitrogen, but the absorption of

those molecules are rather low, and they are usually

masked by water absorption in the case of fresh leaves

(Kumar et al. 2002). Thus, our model may not only

detect occurrences of C. introflexus but it may also

detect other areas that have low water content, thus

possibly overestimating the total area invaded by C.

introflexus on the island of Sylt. For example plots

whereC. introflexus is not present but with high covers

of similar mosses, lichens, certain small grasses or a

high bare soil cover could be misclassified for that

reason.

The fact that our model relies on different areas of

the spectrum, mainly on bands in the short wave

infrared, also underlines the benefits of using data with

a high spectral resolution for the analysis and suggests

that the detection using remote sensing data with a

lower spectral resolution might not be as successful.

While associated with high costs, hyperspectral data

also offers significant advantages for detecting inva-

sive plant species due to the use of a wider range of the

spectrum (see He et al. 2011). However, future

research is needed to test whether the species might

also be detectable using data with a lower spectral

resolution, which is available for larger areas at lower

costs.

Can we use this approach for early detection?

In order to answer the question whether our approach

can support an early detection of invasive plant

species, we will discuss the effects of thresholding,

the reduction of the number of calibration plots and

our model performance for low cover plots.

The selection of the threshold for a given model

significantly influences the resulting binary presence–

absence map. While some authors recommend to

avoid setting thresholds whenever possible (Merow

et al. 2013), it is necessary to use a threshold value in

order to derive binary predictions from probabilities of

presence, for example for management purposes or, in

our case, to quantify the amount of C. introflexus in

different biotope types. In our case the ‘10 percentile

training presence’ showed good performances for

different accuracy measures. However, it might be

useful to vary the threshold depending on the purpose

of the map. For a conservative estimate of the species’

overall presence in the area, a higher threshold might

be useful, whereas a lower threshold could be

employed if a land manger wants to identify all

possibly invaded areas within an early detection and

management framework. Another option would be to

use the probability map, considering the classes above

the threshold as areas where the species most probably

occurs and the first class below the threshold as areas
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that should additionally be searched if the goal is to

find all occurrences.

Another question is whether our approach shows

good results when having a limited number of

calibration plots available, which would be the case

for a species that recently invaded the area. As shown

in Fig. 7, the model produces good results with a small

number of calibration plots. The evaluation using

different accuracy measures showed that 17 calibra-

tion plots are enough to produce a reliable model. The

visual inspection of the projected map indicated that

even with 12 calibration plots, our modelling approach

can generate patterns similar to the ones with a much

larger number of calibration plots. The small number

of presences needed are in accordance with findings

from (Baldeck and Asner 2014), who concluded that

for differentiating savannah tree species, about 19

crowns were sufficient for calibrating the model.

However, in those ecosystems, the crowns usually

cover at least several pixels, while in our dune

ecosystem, C. introflexus is usually mixed with many

with other species. They concluded that the data-

accuracy-relationship depends on the species and their

spectral separability and expect the basic structure of

the relationship to be similar for most datasets.

This suggests that this approach can significantly

reduce the field work effort, at least for the calibration

plots, and that we can also use this approach for

species that are not (yet) very widespread. For

validation, however, we found that a larger dataset

would allow more detailed conclusions on the model

performance. The main challenge is to collect a

balanced dataset: from our dataset of 150 random

plots, only about one third were presence points.

Depending on the size of the area and the previous

knowledge of the target species, such data (presence

for calibration, presence and absence for validation)

can be collected within one to 4 weeks by one person,

as our experience from this and other field campaigns

has proven.

As discussed before, the model performance

decreases for low cover plots (see Fig. 3). This means

that we do have to deal with a certain amount of poor

prediction accuracy for low cover plots. However, we

can say that our approach gives good results even with

reduced number of calibration plots; and setting a

lower threshold, we have a good chance of also

detecting recently invaded areas with low cover

values, which can then be verified during field visits.

Overall, this approach could greatly reduce the overall

searching effort for large areas.

How widespread is Campylopus introflexus

in the different biotope types and what does

that mean for the dune ecosystem?

We found that on the island of Sylt, C. introflexus is

much more widespread than we anticipated. Accord-

ing to our model, it is present in about one quarter of

the pixels in our study area. Even in the case that our

model overestimates the distribution of C. introflexus,

we still found a high level of invasion of this species on

the island (cf. empirical data from the validation plots:

48 occurrences out of randomly located 150 plots).

While the species spread was studied extensively on

the East Frisian Islands (see Hahn 2006), no in-depth

studies on the occurrence of C. introflexus on the

island of Sylt have been carried out up to date.

The general underestimation of bryophyte invasion

was also reported in recent studies that have evaluated

the impact and the future spread of invasive bryo-

phytes and estimated them to be much more wide-

spread than currently known: Mateo et al. (2014)

modelled the potential range of C. introflexus and two

other invasive bryophytes in the Northern hemisphere

and found that it is considerably larger than the

realized range, encompassing large portions of central

and eastern Europe, North America and eastern Asia.

Essl et al. (2014) stated that bryophytes are a largely

understudied group of invasives and found that the

impact of invasive bryophytes will most likely

increase in the future.

Our analysis of the different TMAP dune types

showed that for the most abundant TMAP type, the

dune heath, about one quarter of the pixels is predicted

to be invaded by C. introflexus, while for the second

most abundant TMAP-type, the dune grassland, about

half of the area is predicted to be invaded pixels. C.

introflexus usually invades sunny sites with low pH-

values that have gaps in the vegetation cover (Frahm

1972) and benefits from nitrogen deposition and

carbon-rich soils (Sparrius and Kooijman 2011). It

expands rapidly in suitable areas. In coastal areas, it

often becomes dominant in bryophyte- and lichen rich

sandy xeric grasslands (grey dunes), but also estab-

lishes in the dune heath in gaps in the vegetation cover

(Starfinger et al. 2003). In Denmark, Klinck (2009)

examined about 5000 plots in dune areas and found
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that C. introflexus was present in 15 % of the grey

dunes, and 12 % of the dune heath. Our model is

generally in accordance with those findings, as it

predicts the highest values for dune grasslands (50 %

or the pixels invaded), and lower values in the dry

dune heath (25 % of the pixels invaded), but predicts

higher total degrees of invasion in these habitat types

than were found before. However, those percentages

should be interpreted with caution, as they are

potentially subject to misdetection. For the other

TMAP-types present on the island, the model also

predicts the invasion by C. introflexus, but due to the

limitations mentioned before and the fact that most of

the plots used to calibrate the model are located within

the two most abundant biotope types, the dune

grassland and the dune heath, the predictions for the

other TMAP-types should be considered with caution.

Regarding the question of transferability of our results

to other study areas we therefore propose the follow-

ing: it should be possible to apply the same model to

study areas with similar biotope types, but probably

would not work with a system where the characteris-

tics of the surrounding vegetation substantially differ;

future research is needed to prove those suggestions.

Given that up to one quarter of the pixels (about

6 km2) of our study area are probably invaded, we

argue that C. introflexus will change the dune ecosys-

tem and will likely negatively affect the dune habitat.

We suggest that on the island of Sylt, the development

of C. introflexus should be monitored closely in the

future by establishing permanent plots. Moreover, the

burial of C. introflexus with sand through the reacti-

vation of dunes should be considered as a management

option, as it is currently the most promising method to

reduce the presence ofC. introflexuswithout adversely

affecting the surrounding vegetation (Boxel et al.

1997; Ketner-Oostra and Sýkora 2000). When the

covered by sand, lichens and other pioneer species can

establish upon the moss carpets and act as secondary

pioneers (Ketner-Oostra and Sýkora 2004). It should

further be determined which other factors (e.g. distur-

bances due to rabbit activity, lowering of the ground

water table particularly in dune slacks) are actually

driving the spread of C. introflexus on the island of

Sylt and whether any action can be taken to limit this

spread.

We presume that because of the small size and

inconspicuous character of this species, and the fact

that bryophytes are often not included in vegetation

surveys such as the recent biotope mapping from 2012

(Leguan 2012), its presence has gone mostly unno-

ticed in the recent years on the island of Sylt, and that

on other dune areas, its presence might currently also

be underestimated. We therefore recommend that the

moss should be regularly included in large scale

vegetation surveys such as the biotope mapping, and to

constitute a separate TMAP-type and if available use

hyperspectral remote sensing data in dune areas when

it is known or suspected to be present. While small

occurrences are difficult to map in the field, the larger

mats are easy to recognize even from a distance

without being a moss expert. As the species may cause

severe impacts on the dune ecosystem, its spread

should not go unnoticed.

Conclusion

Our study has demonstrated that hyperspectral remote

sensing data can be used successfully to project the

presence of an invasive moss species. Even with a

certain degree of uncertainty, the projection is useful

to understand the general distribution of the invasion

over a large area. As invasive bryophytes are a largely

understudied group of species, remote sensing pro-

vides a viable alternative to traditional field mapping

for producing insights at larger scales, and to predict

their presence in open areas such as dune ecosystems.

Even though the acquisition of airborne hyperspectral

data is very cost-intensive, it provides information and

insights impossible to gather with traditional methods.

While this study provides a baseline of the invasion

impact and explores the feasibility of the approach,

more research is needed in order to fully understand

the impact of C. introflexus on the different biotopes

on the island of Sylt as well as to explore the feasibility

of possible management options.
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