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REVIEW ARTICLE

SAR-based detection of flooded vegetation – a review of
characteristics and approaches
Viktoriya Tsyganskayaa,b, Sandro Martinis b, Philip Marzahna and Ralf Ludwiga

aDepartment of Geography, Ludwig-Maximilians-Universität München, Munich, Germany; bGerman
Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Wessling, Germany

ABSTRACT
The ability of synthetic aperture radar (SAR) to detect flooded
vegetation (FV) (the temporary or permanent occurrence of water-
bodies underneath vegetated areas) offers a great benefit in the
research fields of flood and wetland monitoring. The growing
demand for near real-time information in flood monitoring and
an increased awareness of the importance of wetland ecosystems
are strong drivers for the ongoing research in these fields, where
FV constitutes an essential part. This study reviewed 128 publica-
tions summarizing the knowledge about the relationships
between the SAR parameters and the environmental conditions
for the detection of FV. An advanced review of 83 studies was
carried out to gain insights about applied classification techniques
and SAR data for the extraction of FV. Although some trends
emerged about which wavelengths, polarisations, or incidence
angles to use, there is variation in the application of different
classification techniques or using SAR-derived information
depending on the data sets and the study area. Notable through-
out the analysed articles is the growing demand for unsupervised
and computationally efficient methods of higher accuracy for the
extraction of FV. Based on the advances in SAR with regard to
spatial and temporal resolution, the development of robust
approaches for the extraction of FV from various and complex
environments has to be further pursued.

ARTICLE HISTORY
Received 28 March 2017
Accepted 5 December 2017

1. Introduction

Detection and extraction of flooded vegetation (FV) is of particular importance for two
application fields: wetland and flood monitoring. Wetlands comprise open water areas,
as well as different types of FV (e.g. emerging woody, herbaceous vegetation) (White
et al. 2015), which can be permanently or seasonally flooded. Wetlands are important
ecosystems providing many essential services, such as flood control, sediment storage,
wildlife habitat, filtering of contaminants, recreation, aesthetic value, and others
(Millennium Ecosystem Assessment 2005). Despite these benefits, wetlands have been
extensively converted to agriculture areas worldwide (Asselen et al. 2013) and
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furthermore are endangered by climate change (Erwin 2009). Continuous monitoring of
changes in wetlands contributes to their protection.

In comparison to wetland monitoring, detecting FV for flood monitoring is a relatively
young field. Besides the detection of open waterbodies, the focus lies on the extraction of
FV. The availability of detailed near real-time information about the extent of inundation
areas at large scales is a significant data source for many institutions, such as humanitarian
relief organizations, decision makers for crisis management or insurance companies. In
contrast to open flood surfaces, there is little research on the detection of flooded areas
underneath vegetation. However, the disregard of FV can lead to an underestimation of
the extent of an inundation, which may lead to higher risk to human lives and damage of
their properties. Furthermore, flood affects agricultural areas worldwide, entailing enor-
mous economic losses (Trujillo 2015). These possible impacts show the importance to
continue the investigations in the field of FV as a part of wetland detection and flood
monitoring.

The terminology and definition of FV vary from survey to survey, depending on its
scope and study area. Terms such as partially submerged vegetation (Martinis und Rieke
2015) or FV (e.g. Pierdicca et al. 2008; Pulvirenti et al. 2013; Pulvirenti et al. 2016; Martinez
und Le Toan 2007; Martinis und Twele 2010) can be found in the corresponding literature.
The designation FV is used to describe unspecified types of FV or as an umbrella term for
different vegetation types (e.g. standing water underneath forested or in between agri-
cultural areas) (Betbeder et al. 2014; Schlaffer et al. 2016). In the scope of this review, the
term FV describes the temporary or permanent occurrence of a water surface beneath a
vegetation canopy; however, it does not consider vegetation areas, which are completely
covered by water. In agricultural or herbaceous areas, the leaves or stems of the plants
visibly emerge above the water surface. In forests or tree stands, standing water can occur
underneath the vegetation canopy during flood conditions. FV summarizes different terms
related to the aforementioned definition used in the reviewed literature.

Synthetic aperture radar (SAR) is a well-known and well-established tool for the
extraction of FV from space due to numerous advantages. In comparison to optical
sensors, the SAR systems use longer wavelengths of the electromagnetic spectrum,
allowing cloud penetration and therefore weather independent image acquisition.
Furthermore, SAR systems are active sensors, transmitting and receiving their own
electromagnetic impulses, which allows operations independent of daylight (Klemas
2013; Betbeder et al. 2014). A relatively high energy supply is required for SAR observa-
tions, which can be a restricting factor for the availability of SAR time series data and
even for the acquisition of single images in some regions in the world. However, the
recently launched C-band Sentinel-1 and L-band ALOS-2 satellite missions may now
overcome this limitation and therefore provide a possibility for continuous monitoring
of ground features and their changes over time with short revisit times (White et al.
2015). The main advantage of SAR technology, however, is the ability to detect FV due
to its capability to penetrate the vegetation canopy to a certain extent depending on
the wavelength and its sensitivity to water underneath the vegetation. SAR backscatter
intensity (BI) values can significantly increase during the presence of water underneath
vegetated areas due to the double- or multi-bounce interaction between the specularly
reflecting water surface and vertical structures of the vegetation, such as trunks and
stems (Moser et al. 2016; Pulvirenti et al. 2013; Pulvirenti et al. 2011a).
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While there are clear advantages of SAR data regarding the detection of FV, there
are a number of challenges regarding SAR image analysis and its interpretation, as
well as limitations, particularly for FV mapping. Speckle, which is inherent to all SAR
imagery, may lead to uncertainties in measurements and may consequently result in
a decrease of the classification accuracy. This effect can be mitigated using spatial or
temporal speckle filters (Lopes, Touzi, and Nezry 1990; Quegan und Yu 2001). Further
limitations appear in hilly regions due to geometric and radiometric effects (e.g.
foreshortening and layover) occurring in side-looking systems such as SAR (White
et al. 2015). These effects increase with small look angles and steep slopes. A
correction of these effects has to be applied to reduce their influence.
Furthermore, the enhancement caused by double-bounce, as discussed before, is
not always detectable depending on the environmental parameters (e.g. above-
ground biomass) and sensor characteristics (e.g. wavelength). Finally, backscatter
intensities of FV can be similar to the backscatter intensities of urban areas and
bare soil areas with high-moisture content. This can result in confusion with FV and
misclassification (Chapman et al. 2015; Pulvirenti et al. 2016). In summary, dealing
with SAR data can be a challenging task; however, it also constitutes a great
opportunity for the mapping of FV due to the aforementioned advantages, if the
complexity of these data is well understood.

Overviews and reviews about the potential and capability of SAR systems for the
detection of FV have been provided in the research fields of wetland and flood monitoring.
These reports summarize the knowledge about the relationships between the sensor
parameters (wavelength, polarisation, incidence angle) and environmental conditions (e.g.
vegetation type, phenology of plants, soil moisture). Useful status reports have been
provided by Hess, Melack, and Simonett (1990), Hall (1996), Schmullius and Evans (1997),
Henderson and Lewis (2008), and Silva e al. (2008). Analysis and classification methods for
the detection of FV have been summarized by Henderson and Lewis (2008). In addition,
there have been more recent reviews briefly and fragmentarily discussing the detection of
FV, as part of a more general overview (White et al. 2015) or in a context of a specific topic,
such as object-based analysis in wetlands (Dronova 2015) or sensing of mangrove ecosys-
tems (Kuenzer et al. 2011), emergent and submerged wetlands (Klemas 2013), and flood
inundation with microwaves (Schumann und Moller 2015).

The technical progress of SAR systems and the advances in computer technology
have led to an intensive effort to develop suitable algorithms for the extraction of FV
from SAR imagery over the last decades. Furthermore, the growing demand for near
real-time information in flood monitoring and an increased awareness of the importance
of wetland ecosystems are strong drivers for ongoing research in these fields, where FV
constitutes an essential part. This article aims to provide a comprehensive and current
status of the possibilities regarding the detection and extraction of FV for both flood and
wetland monitoring. The following objectives are addressed,

● to give an overview of sensor characteristics and environmental conditions and
their effects on the SAR signal regarding the detection of FV,

● to review the current state of the art of the classification algorithms applied to
various SAR data sets for the extraction of FV, and

● to demonstrate benefits and limitations of existing methods.
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The article is composed of five sections. Section 2 describes the literature selection on
which the analyses are based. Section 3 provides an overview of the knowledge about
the relationship between SAR parameters (e.g. wavelength, polarisation, incidence
angle) and environmental parameters (e.g. aboveground biomass, water level) related
to FV. Section 4 addresses various SAR data sets, the specifications of the classification
algorithms including their different tasks and their respective benefits and limitations.
Section 5 summarizes and concludes the aforementioned findings and illustrates future
trends as well as needs for improved extraction of FV.

2. Methodology

For identification of relevant publications, a combination of key terms linked to FV, their
synonyms, and related terms (Table 1) were applied as structured queries for the period
from 1 January 1985 to 26 July 2016 using Web of Science (http://apps.webofknowledge.
com/) as a search engine. An initial gross selection of 547 results was determined after the
search restriction to articles and reviews. Further selection was conducted based on the
abstract of these articles. Studies were excluded where key terms were present, but that
did not refer to any form of radar data application as data source alone or in combination
with other information (e.g. optical data, elevation) for the analysis or/and detection of the
temporal or permanent occurrence beneath vegetated areas. Studies that did not address
any form of FV, e.g. studies on vegetation only or addressing open water alone, were also
excluded. The resulting set of studies containing 128 articles (Appendix 1) was then used
to give an overview about effects on the SAR signal by sensor characteristics (wavelength,
polarisation, incidence angle), environmental parameters (e.g. aboveground biomass, soil
moisture, water depth), and their interaction.

An advanced selection was performed for the identification of studies, which applied
classification algorithms for the extraction of FV. Based on this search, 83 studies were
determined, published in the period from 1994 to July 2016 (Table 2). This new set of
articles provides an overview of the diversity of applied data sets and classification algo-
rithms aiming at the extraction of FV. The data sets include various SAR-derived informa-
tion (BI, polarimetric parameters [PPs], and interferometric coherence [IC]). Furthermore,
the classification algorithms differ regarding the level of classification (pixel or segment
based) and the temporal frequency of the applied SAR data, which is investigated by
categorizing the studies into single date, change detection, order-independent multi-date,
and time series approaches. The identified classification algorithms are categorized into
various groups to demonstrate the diversity of applied methods, their number of occur-
rences in the studies, and their requirements for preliminary information, such as training
samples (supervised or unsupervised approaches). Their benefits and limitations are

Table 1. Search key words applied to select studies for this review and the initial number of results
for each combination of key words.

Key words (topics)
Number of
results

Number of results (articles
and reviews)

(radar OR microwave* OR SAR*) AND (flood* OR inundat*) AND (‘flooded
vegetation’ OR forest* OR agricultur*) AND (classif* OR mapp* OR extract*)

265 186

(radar OR microwave* OR SAR*) AND wetland* AND
(classif* OR mapp* OR extract*)

483 361
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summarized to promote the identification of methodological trends in the last decades
and opportunities for further research on mapping FV.

3. Effects of sensor characteristics, environmental conditions, and their
interactions on the SAR signal

The representation of FV in SAR images can vary and may be difficult to interpret
because of complex interactions between SAR characteristics (wavelength, geometric
resolution, polarisation, incidence angle) and environmental conditions (e.g. vegetation
type, phenology of plants, soil moisture, water depth) (Hess, Melack, and Simonett 1990;
Schumann and Moller 2015; Melack und Hess 2010). These different parameters can
strongly influence the backscatter values and affect the ability to discriminate features
on the ground surface, such as FV. Therefore, it is essential to identify sensor character-
istics which can provide an appropriate basis for the development of methods aimed at
the extraction of FV. This section is intended to show a further overview, supplemented
by current findings about the relationship of sensor characteristics and environmental
conditions having a positive effect on the detection of FV.

3.1. Wavelength

The backscatter values for FV vary as a function, amongst others, of radar wavelength
depending on the vegetation density and structure, flood conditions, and soil moisture
(Lang, Townsend, and Kasischke 2008).

Generally, the longer the wavelength, the higher the capability of the SAR signal to
penetrate the vegetation canopy (Wang 2002; Hess 2003). Numerous studies concluded
that L-band is suited to detect inundations beneath forested canopy and should be the
preferred wavelength for this purpose (Hess, Melack, and Simonett 1990; Hess 2003;
Betbeder et al. 2014). Le Toan et al. (1997), and Wang (2004) remarked, however, that
the capability of L-band and also of other bands to penetrate some forested areas can
be reduced or are even non-existent depending on the vegetation density, the gaps
between or the height of the vegetation (see Section 3.4).

In comparison to L-band, the ability of shorter wavelengths, such as C-band, or
X-band, to penetrate vegetation canopy is reduced (Costa et al. 2002; Hess 2003).
Although the penetration of the C-band is limited, an increase in the backscatter values
for FV was exhibited, during leaf-off as well as leaf-on conditions (Lang und Kasischke
2008; Townsend 2001), in dependency of the available polarisation (Townsend 2002).
Zhang et al. (2016) showed that C-band is more useful at the initial growth stages if the
density of the vegetation is low. Also, C-band data has the potential to detect paddy rice
cultivation (Brisco et al. 2013b; Le Toan et al. 1997) and herbaceous wetlands (Grings
et al. 2008).

X-band sensors (e.g. TerraSAR-X) produce detailed information due to their high
resolution within the centimetre range (Airbus Defence and Space 2016). In general,
the penetration of dense canopy by X-band is limited as a result of high interference
with leaves, where backscatter is dominated by volume scattering (Voormansik et al.
2014). However, Martinis and Rieke (2015) and Voormansik et al. (2014) showed the
potential of X-band to identify FV for sparse vegetation or during leaf-off conditions. In

INTERNATIONAL JOURNAL OF REMOTE SENSING 2263



this case, the transmissivity of the canopy is increased due to gaps in the canopy or no
biomass at all and the contribution of double-bounce (interaction between water and
tree trunks or branches) dominates the volume scattering. Some other studies demon-
strated the ability of X-band to map FV in wetlands (Moser et al. 2016), in flooded
marshland (Horritt 2003), and in olive groves (Pulvirenti et al. 2013).

Bourgeau-Chavez et al. (2001) underlined the importance of multi-frequency SAR data
for consistent wetland mapping. In their study, the applied wavelengths complement
their capability for the discrimination of flood underneath different vegetation types.
While C-band was used to discriminate herbaceous vegetation from dry upland, the
L-band was found best suitable to differentiate between flooded and non-flooded forest
(Hess and Melack 2003; Zhang et al. 2016). Multi-frequency SAR data were also found
useful to map flooding in wetland areas by Evans et al. (2010).

3.2. Polarisation

Polarisation describes the orientation of the electromagnetic field vector with respect to
its direction of propagation of a SAR system, which can be horizontal (H) or vertical (V)
for a single channel. The signal of a SAR system can be transmitted and received, co-
polarised (HH or VV), and cross-polarised (HV or VH). Some advanced SAR systems are
able to transmit and receive the signal in dual-polarised mode (HH and VV, HH and HV,
VV and HV) and in all levels (HH, VV, HV, and VH). Dual- and fully polarimetric sensors are
able to identify different scattering mechanisms, which are characteristic for different
land-cover types (Lewis, Henderson, and Holcomb 1998; White et al. 2015).

Townsend (2002), Bourgeau-Chavez et al. (2001), Karszenbaum et al. (2000), Lang and
Kasischke (2008), and Sang et al. (2014) suggested the use of HH polarisation in mapping
flooded forests in comparison to VV polarisation relating to the orientation of the SAR
signal for single-polarised data. This is due to the fact that the contribution of double-
bounce scattering from the trunk-ground interaction is smaller at VV than at HH (Wang
et al. 1995). In general, HH polarisation penetrates the vegetation canopy better than VV
and, when striking the water surface, it is more strongly reflected in comparison to VV
polarisation (Pierdicca et al. 2013). While the co-polarised backscatter is more sensitive
to the double bounce, the cross-polarised one is more sensitive to volume scattering
because of its depolarising characteristics (Marti-Cardona et al. 2010). Consequently, the
backscatter increase due to FV is expected to be more detectable in co-polarised than in
cross-polarised data (Hess, Melack, and Simonett 1990). Nevertheless, the combination
of co- and cross-polarised data may improve the identification of FV as the double
bounce allows a better discrimination between different FV types (Zhao et al. 2014).

Single-polarised SAR data are able to identify FV due to an increase in backscatter
values in comparison to other land-cover types. These data are often used due to its
greater coverage and higher spatial resolution in comparison to dual- or quad-polarised
SAR data. The source of this increase in backscatter values is assumed to be the fact that
vegetation under flood conditions can act as corner reflectors causing double-bounce
effects (Moser et al. 2016; Pulvirenti et al. 2013). The individual backscatter mechanisms,
such as double bounce, cannot be identified in single-polarised images. However, single-
polarised data, which provide BI, may increase during flood conditions (Betbeder et al.
2014). Some objects (e.g. urban structures, ploughed bare soils) may cause similar

2264 V. TSYGANSKAYA ET AL.



backscatter intensities as FV. The similarity of SAR backscatter only constitutes a critical
issue when analysing single-polarised images (Schumann and Moller 2015; Martinis and
Rieke 2015; Pulvirenti et al. 2016). The use of ancillary data (e.g. land-cover map, optical
data) may reduce the confusion between the aforementioned objects by exclusion of
non-vegetated features. In the past, studies increasingly used single-polarised data for
the detection of different FV types, such as forested wetlands (Bourgeau-Chavez et al.
2001; Pistolesi, Ni-Meister, and McDonald 2015), marshland (Horritt 2003), as well as
agricultural areas (Pulvirenti et al. 2011b; Kasischke et al. 2003).

Single-polarised SAR data only provide BI and, according to White et al. (2015) and
Betbeder et al. (2014), are not quite efficient enough to detect FV due to the restricted
information content about backscatter mechanism such as the double-bounce effect.
SAR systems with multi-polarised SAR data (dual-polarised and fully polarised) have
significant advantages in comparison to single-polarised SAR data, providing more
information about the presence of water underneath the vegetation canopy (Souza-
Filho et al. 2011).

Dual-polarised SAR data are generally used to produce ratios between two polarisation
types. Brisco et al. (2011) mentioned that polarisation ratios using horizontal polarisation
are appropriate for mapping FV for a generalized land-cover map. Furthermore, Mougin
et al. (1999) and the aforementioned study indicate the suitability of the HH/HV ratio in
separating FV from uplands. According to Le Toan et al. (1997) and Wang (2004), the ratio
between HH and VV is higher for FV than that of most other land-cover classes, because
the vertical polarised wave is more attenuated than the horizontally polarised one.
Schmitt et al. (2012) designed an approach to identify FV by applying dual-polarised
(HH-VV) data to distinguish between agricultural areas and swamp forest in wetlands. A
recently developed approach that enables the extraction of FV by the decomposition of
dual-polarised data was presented by Moser et al. (2016). The techniques for decomposi-
tion of dual-polarised SAR data are quite young; however, according to aforementioned
studies, they produced promising results (see Section 4.1.2).

More known and common is the application of quad-polarised SAR data. The quad-
polarised data have smaller area coverage in comparison to single- and dual-polarised SAR
data. This can represent a drawback due to an inadequate coverage of the area of interest,
depending on the study task. However, the quad-polarised data allow the application of
polarimetric decomposition, which separates SAR signals into different scattering mechan-
isms: volume, single-bounce (on specular or rough surface), and dihedral scattering
(double-bounce). The volume scattering mechanism represents multiple scatterings and
can be found over forested and agricultural areas, where the SAR signal is diffusely
backscattered by tree crowns or vegetation canopy. In case of single-bounce scattering
on specular surfaces, the most of the SAR energy is reflected away from sensor. For
example, these are flat open water surfaces, which often appear dark in a SAR image
(Ulaby, Fung, and Moore 1986). Double- or multi-bounce scattering occurs between a
specularly reflecting water surface and vertical structures of the vegetation, such as trunks
and stems (Moser et al. 2016; Pulvirenti et al. 2013; Pulvirenti et al. 2011a). This scattering
mechanism represents a key component for the detection of FV using SAR data.

The identification of scattering mechanisms enables the distinction of different cover
types and environmental conditions, such as flood. The most frequent application of
quad-polarised SAR data and decomposition techniques for detection of FV can be
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found in the field of wetland monitoring due to the capability of this data to distinguish
flooded and non-flooded conditions, as well as individual FV types, such as marshes and
wooded wetlands or rushes (Robertson, King, and Davies 2015; Gallant et al. 2014; Schmitt
und Brisco 2013; Morandeira et al. 2016; Betbeder et al. 2014). The individual decomposi-
tion techniques and their successes for the extraction of FV are described in Section 4.1.2.

3.3. Incidence angle

The utility of SAR data to detect FV is significantly influenced by the incident angle. It is
defined as the angle between an imaginary line perpendicular to the Earth’s surface and
the radar signal. Depending on the satellite sensor, the incidence angles range between
10° and 65°. Thereby, the larger incidence angles are declared as shallow and the smaller
angles are termed steep. Several studies, focused on the vegetation type forest, address
an appropriate incidence angle for the differentiation between flooded and non-FV
(Richards, Woodgate, and Skidmore 1987; Bourgeau-Chavez et al. 2001; Lang,
Townsend, and Kasischke 2008). Previous investigations indicated that steeper incidence
angles are preferential for the distinction of non-flooded and flooded forest (Kandus
et al. 2001; Bourgeau-Chavez et al. 2001; Hess, Melack, and Simonett 1990; Richards,
Woodgate, and Skidmore 1987; Costa et al. 2002). This circumstance can be explained by
the SAR signal having a shorter path through the crown layer at steeper angles. As a
result, the transmissivity of the vegetation canopy for SAR energy is increased. This leads
to a potential increase in interaction between the surface water on the ground and the
tree trunks. Shallow incidence angle signals are more influenced by the crown layer,
resulting in increased volume scattering (Lang, Townsend, and Kasischke 2008; Hess
2003; Townsend 2001; Costa et al. 2002). According to the results of Lang, Townsend,
and Kasischke (2008), the ability to detect waterbodies underneath forested areas did
not decline as strongly as expected with increasing incidence angles, and less than
expected at steeper incidence angles, in comparison to previous findings in the litera-
ture. Lang, Townsend, and Kasischke (2008) also mentioned that the angular signatures
varied between different forest types and the capability to detect flooded forest is
similar during the leaf-off and leaf-on conditions.

The backscatter signature of a target in two different images, acquired under similar
environmental conditions, can vary in dependency of different incidence angles of these
images. Depending on the task, the changes in backscatter due to different incidence
angles have to be considered. For instance, Pulvirenti et al. (2011a) applied a simplified
cosine model (Ulaby und Dobson 1989) assuming that the variation of backscatter can
be approximated by cosine-squared function depending on the incidence angle itself.
However, the use of multi-incident angle SAR images does not necessarily constitute a
drawback. The results of Kandus et al. (2001) indicated that combinations of images with
different incidence angles can improve the discrimination of different FV types in wet-
lands. In addition, Lang, Townsend, and Kasischke (2008) pointed out the benefits of
multi-incident angle imagery for monitoring flood extent under forest canopies.
Henderson and Lewis (2008) remarked that dense forest canopy can be appropriately
detected by the combination of L-band, HH polarisation, and low-to-moderate incidence
angle imagery. However, low incident angle in C-band and HH or VV polarised data is
also suitable for a sparse canopy layer.
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3.4. Environmental conditions

Besides sensor characteristics, the backscatter signature of FV is strongly affected by the
environmental conditions and their characteristics, such as vegetative biomass over the
ground/water (vegetation type, phenology of plants), soil moisture, and water depth.
Several theoretical microwave scattering models can be found in the literature, which
describe the interaction between the SAR transmitted microwave energy and vegetation
or FV on the ground (Kasischke and Bourgeau-Chavez 1997; Wang et al. 1995). Low
vegetation (low/moderate stage of growth) and high vegetation (e.g. deciduous forests,
coniferous forests) are often considered separately in the literature (e.g. Pulvirenti et al.
2011b), because of the different effects that vegetation structure and density have on
the signal intensity.

Vegetative aboveground biomass has been found to have a great influence on the
scattering of FV (Pope et al. 1997). The biomass is described in various studies as canopy or
crop density (e.g. Dwivedi, Rao, and Bhattacharya 1999; Grings et al. 2008) or as a
combination between leafs and stems (Kasischke et al. 2003). Le Toan et al. (1997), Pope
et al. (1997), Mougin et al. (1999), Sang et al. (2014), and Yu and Satschi (2016) found that
SAR backscatter is increasing as a function of biomass and they determined saturation
points at which water beneath the canopy cannot be detected any longer. The saturation
point can shift depending on sensor characteristics (wavelengths, incidence angle, and
polarisation) and environmental parameter (e.g. aboveground biomass) (Yu und Saatchi
2016; Sang et al. 2014). Before the saturation point (lower level of biomass), the transmis-
sivity of the microwaves radiation through the vegetation canopy is possible due to the
small size and density of scattering elements. If the saturation point is reached, the volume
scattering from the canopy completely superimposes the contribution of double bounce
from the interaction between the water surface and vertical vegetation structure (e.g. tree
trunk, stems volume) (Costa et al. 2002; Kasischke et al. 2003; Aziz und White 2003).
Consequently, the phenology of plants or leaf-on/leaf-off conditions highly affect the
detection of FV depending on the sensor characteristics.

Beside the aboveground biomass, the contribution of the ground is another impor-
tant environmental parameter influencing the backscatter signal of FV. Kasischke et al.
(2003) showed an increase in backscatter through all biomass levels as soil moisture
increases, provided that the transmissivity of the biomass still exists (the saturation point
is not exceeded). In case of low soil moisture, as biomass increases, there is an increase
due to volume scattering from the canopy; however, there is a little or no contribution
from multi-interaction scattering. When the surface is flooded, there is no contribution
of energy from the ground surface and the backscatter signal is dominated by the
double-bounce scattering and the volume scattering from the vegetation canopy
(Kwoun und Lu 2009).

Pulvirenti et al. (2011a) investigated that the water depth fluctuations significantly
influence the backscatter intensities in FV areas due to the predominance of scattering
mechanisms for agricultural and herbaceous vegetation. Depending on the height of the
vegetation and the water depth, the double-bounce scattering can become a predomi-
nant effect and cause the increase in backscatter, while the volume scattering becomes
subordinate (Bourgeau-Chavez et al. 2001; Bourgeau-Chavez, Kasischke, and Smith 1997;
Grings et al. 2006; Kiage et al. 2005; Sang et al. 2014). If the emerging part of the plants
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becomes too small, no considerable double-bounce scattering can be produced and the
backscatter would not increase (Pulvirenti et al. 2011a). Consequently, the combination
of sensor parameters and the knowledge concerning environmental properties and
conditions is a crucial point for the extraction of FV.

4. Overview of methods and their data sets for the extraction of FV

Based on 83 selected studies, an overview of the diversity of applied data sets and
classification algorithms aiming at the extraction of FV is given in this section.
Furthermore, the classification algorithms are categorized and analysed based on the
level of classification (pixel- or segment-based) and the temporal frequency of the
applied SAR data. A list of the studies is provided in Table 2. Each of these studies
includes a unique ID, which serves as a reference within this section.

4.1. SAR-derived information for image classification

For the extraction of FV various SAR-derived image, information were used in the studies
comprising BI, PPs as well as IC. The number of occurrences of the SAR-derived
information in the analysed studies is demonstrated in Figure 1.

4.1.1. Backscatter intensity
The BI for each pixel in a SAR image represents the basic SAR-derived information and
the proportion of the SAR signal backscattered from the objects on the ground,
depending on sensor characteristics (polarisation, frequency, incidence angle, and reso-
lution) and environmental conditions of a target (e.g. size, shape, orientation, and
moisture content). The BI values are often converted to a normalized radar cross section
or backscattering coefficient, which is measured in decibel (dB) units (Henderson und
Lewis 2008). Figure 1 shows that the majority of studies (69 of 83) used BI for the
classifications of FV vegetation (ID 1–12, 14–16, 19–31, 34, 36–49, 52–63, 65, 67–81).

Figure 1. SAR-related information on which classifications were conducted and their number of
occurrences for the extraction of FV in the selected studies.
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4.1.2. Polarimetric parameters
The advancement of satellite systems in the recent years enables the acquisition of fully
polarimetric data, transmitting and receiving the SAR signal in all four planes (HH, VV,
HV, and VH). By preserving the phase information, the fully polarimetric data allow the
decomposition of the SAR signal into the following three scattering mechanisms: single
bounce (on specular or rough surface), volume and dihedral scattering (double-bounce)
(see Section 3.2). The scattering mechanisms represent an example of PP, which are
applied as extended SAR-derived information for the detection of FV. The identification
of scattering mechanisms constitutes a great benefit for the extraction of FV in contrast
to the single usage of BI. FV does not always have a clear BI signal that can be easily
detected. For example high soil moisture conditions can cause similar backscatter values
as FV. A significant challenge to differentiate both of these targets arises in the case of
the application of BI on its own. The usage of PP can overcome this lack of information
by providing different scattering mechanisms and consequently making it easier to
separate FV types from upland areas (White et al. 2014; Heine, Jagdhuber, and Itzerott
2016) (Martinez and Le Toan 2007; Pulvirenti et al. 2011a; Pulvirenti et al. 2016; Wang
und Davis 1997).

For the extraction of PP, various polarimetric decomposition methods have been
developed. Usually, the polarimetric decompositions apply fully polarimetric SAR data
(quad-pol data) for the extraction of FV. For the separation between FV and other areas,
various decompositions (model-based and eigenvalue-based) were applied during the
studies. Examples for model-based decompositions are the Freeman–Durden decom-
position (ID 13, 18, 32, 33) and the Yamaguchi four-component decomposition (ID 17,
32, 82). These physically based models decompose the backscatter response from each
pixel into three scattering mechanisms: volume scattering, double-bounce scattering
(diplane scattering), and surface or single-bounce scattering using a Freeman–Durden
decomposition (Brisco et al. 2011; Corcoran et al. 2012; Furtado, Silva, and Novo 2016;
Gallant et al. 2014) and an additional fourth component (helical scattering) using the
Yamaguchi four-component decomposition (Koch et al. 2012; Chen et al. 2014; Furtado,
Silva, and Novo 2016; Zhao et al. 2014; Lee und Pottier 2009). One disadvantage of these
models is the assumption of the objects symmetry, although most objects on the
ground do not follow symmetrical orientation in consequence of their structure (Brisco
et al. 2013b). However, these decompositions can be used to detect FV as two poten-
tially perpendicular planes which act as a corner reflector in the presence of water
(double-bounce scattering). The decomposition of the SAR signal into three- or four-
channel images allows an easy comparison of the outputs.

An example for a decomposition based on eigenvectors is the Cloude–Pottier decom-
position (Brisco et al. 2011; Chen et al. 2014; Corcoran et al. 2012; Zhao et al. 2014),
which is used by further six studies (ID 13, 17, 18, 35, 50, 82). A further eigenvector-based
decomposition for the derivation of PP is the Touzi incoherent decomposition (Touzi,
Deschamps, and Rother 2007, 2009; Furtado, Silva, and Novo 2016; Patel, Srivastava, and
Navalgund 2009), which is applied in three studies (ID 13, 17, 32). The eigenvalue-based
decompositions use a coherency matrix to obtain eigenvectors and eigenvalues.
Thereby, the physical scattering mechanisms are characterized by the eigenvectors
and their strength (degree of randomness) is quantified by the eigenvalues (Cloude
und Pottier 1997). PPs are important as they are often specific to one scattering type and
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thus improve the classification of specific classes, such as FV (Heine, Jagdhuber, and
Itzerott 2016).

The most common polarimetric decompositions can only be derived from fully
polarised (quad-polarised) SAR data. However, the availability of quad-pol data is more
limited (Moser et al. 2016; Schmitt et al. 2012). There are few decomposition approaches
applicable for quad- and dual-polarised data. One of them is the method of normalized
Kennaugh elements, which is adapted for any wavelength (Moser et al. 2016; Schmitt,
Wendleder, and Hinz 2015) and also for all SAR sensors (ID 51). By retaining the phase
information of dual-polarised data, the Kennaugh elements enable the interpretation of
physical surface and double-bounce scattering mechanisms (Schmitt et al. 2012). In
addition, the Shannon entropy (SE), which represents an eigenvector decomposition
(Lee and Pottier 2009), can cope with dual-polarised data, too (ID 5, 6).

The compact polarimetric (CP) SAR system is configured to transmit only one polar-
isation, while two linear polarisations, horizontal and vertical, are received. This techni-
que enables the creation of pseudo quad-pol data from a dual-polarised SAR system
(Brisco et al. 2013b; Dabboor et al. 2015; Nord et al. 2009). An important requirement of
CP is the maintenance of the relative phase between two received polarisations, which is
necessary to construct CP images. The reason for the application of CP are the benefits
of quad-pol data, such as improved classification through increased information content,
while its drawbacks, such as reduced area coverage, are being avoided (Brisco et al.
2013b). Within this technique, m-delta decomposition is a suitable method to decom-
pose the CP data. It is comparable to the Freeman–Durden decomposition. The simu-
lated CP was investigated by Brisco et al. (2013b) using the m-delta decomposition for
FV classification in wetland areas (ID 8).

Decompositions allow the extraction of physical information (backscatter mechan-
isms), but they do not represent a classification approach on their own. In the
literature, the classification of decompositions for FV was mostly performed by
machine-learning techniques (e.g. Support Vector Machine (ID 5, 6, 13), random forest
classification (ID 18, 32, 35, 66, 82)), followed by distance-based classification methods
(e.g. maximum likelihood classification (ID 13, 51), k-nearest-neighbour classification
(KNNC) (ID 5, 17). However, also a few decision tree classifiers (ID 5, 17), two Wishard
classifications (ID 17, 50), a single manual thresholding approach (MTA) (ID 33), and a
single ISODATA clustering technique (ID 59) were performed based on decomposed
SAR data.

Only, 12 studies performed a classification applying PP (ID 5, 6, 13, 17, 18, 32, 33, 35, 50,
51, 66, 82) (Figure 1). Several reasons for this uneven distribution can be assumed: (1) The
application of PP requires dual- or quad-polarised data, in which the phase information is
maintained. The advance in satellite systems during the last couple of years enables the
extraction and application of the polarimetric information. (2) Based on different SAR
sensors, the advanced polarisation modes might not always be available. In comparison
to single-polarised data, reduced area coverage and resolution limit the usage of dual- or
quad-polarised data. As a consequence, the application of polarimetric analysis for FV is
restricted in comparison to the usage of BI values. (3) The preprocessing effort for BI is
significantly lower in comparison to the derivation of PP (Betbeder et al. 2014; Morandeira
et al. 2016; Robertson, King, and Davies 2015). (4) The interpretation of PP is likely to be
more time consuming (e. g. interpretation of Pauli-Decomposition).
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Figure 1 shows that exclusively PPs were applied in six different studies (ID 6, 13,
17, 18, 33, 50). Seven further studies used BI along with PP (ID 5, 32, 35, 51, 59, 66,
82). Thereby, the latter is used either as supplementary information to achieve
higher accuracy for FV or as a comparison to BI-based results. Some of these
studies performed comparisons of the accuracies for FV, which are described in
the following. The application of BI only (HH, VV, HH/VV) resulted in poor kappa
values (0.48, 0.33, 0.13) as reported by Betbeder et al. (2014). An improvement was
reached using SE (kappa: 0.85) showing an accuracy of 90% PA (producer’s accu-
racy) and 75% UA (user’s accuracy) for FV. Furtado, Silva, and Novo (2016) reported
that flooded forest had a 30–40% increase in PA and UA when polarimetric
descriptors were used instead of only BI. The highest accuracy, therefore, is situated
at 79% PA and 95% UA. Moser et al. (2016) demonstrated an increase in the PA
(90%) and UA (90%) accuracy for FV extracted by PPs in comparison to the PA
(79%) und UA (87%) based on BI. In addition, Robertson et al. (2016) applied BI and
Cloude–Pottier decomposition for the extraction of FV showing that the UA (83%)
and PA (67%) based on the BI are similar to the PA (80%) and UA (68%) based on
Cloude–Pottier results. Overall, the application of PP constitutes an improvement of
the accuracy for FV in comparison to results only achieved by using BI.

4.1.3. Interferometric coherence
A useful technique for the identification of FV constitutes the SAR interferometry
through the usage of the IC, computable from two interferometric SAR images. The
application of interferometric SAR technology is relatively new in the research field of
the extraction of FV and limited based on several requirements of certain conditions,
such as maintained phase information in the SAR data or a short temporal baseline
between an interferometric pair (Pulvirenti et al. 2016). Recently published studies used
IC information alone (ID 83) and in combination with the BI (ID 64) for the extraction of
FV (Figure 1). The coherence might help differentiating between vegetation and bare
soil areas, where the latter has considerably higher coherency values. Consequently, the
coherence may replace the application of ancillary information, such as optical data or
land-cover information, which is often used to separate between various objects with
similar BI. The combination of both, BI values and associated phase coherence, enables
the discrimination of non-flooded and FV (Alsdorf et al. 2000; Alsdorf, Smith, and Melack
2001; Kwoun and Zhong 2009; Oliver-Cabrera und Wdowinski 2016; Xie et al. 2013;
Zhang et al. 2015).

4.2. Specification and comparison of applied classification techniques

Based on 83 studies, a comprehensive review of the classification techniques applied for
the extraction of FV was conducted. The algorithms are placed in categories, due to their
similarity towards each other and in regard to their application fields. Thereby, the
number of the applied approaches can exceed the number of the analysed studies as
a single study can implement more than one of these approaches (overall 101 classifica-
tion algorithms in 83 studies).

These classification techniques can be categorized into supervised and unsupervised
classification techniques (Figure 2). In general, supervised classification uses reference
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classes obtained from training samples (reference data) to classify the image elements
(Richards 2012). The majority of the performed classification algorithms in each study are
supervised (89 studies). The number of occurrences of unsupervised techniques for the
extraction of FV in the studies is comparatively low (12 studies). Furthermore, unsuper-
vised classification algorithms are mostly applied as a part of a processing chain, which
additionally includes a supervised classification algorithm or manual interaction steps.

The range of classification algorithms applied for the extraction of FV is diverse
(Figure 2). The distance-based classification methods constitute the majority of the
applied classification algorithms amongst the analysed studies (28 of 83). Whereby,
algorithms are categorized as distance-based because they are using simple distance
functions. Figure 3 shows the number of occurrences for distance-based classifications.
Maximum likelihood classification (MLC) was identified as one of the most common
classification techniques within the distance-based methods (15 of 29) applied for the
extraction of FV (ID 8, 9, 12, 13, 23, 25, 49, 51, 53, 56, 57, 67, 71, 77, 80). The supervised
KNNC was applied four times for the extraction of FV (ID 5, 17, 54, 80). A parallelepiped
classification is one of the distance-based classification methods and was used in three
studies (ID 26, 44, 49). Three of the distance-based classifications used the Mahalanobis
distance (ID 43, 74, 75). Other two studies applied the Bhattacharyya distance (ID 20, 21,
22). Due to their simplicity, availability, and statistical transparency (no black box), these
algorithms are popular tools not only for classification in general but also for detecting
FV. Furthermore, they can be easily adapted to other study sites or data sets (Martinez
and Le Toan 2007). Especially MLC and KNNC are often used as a reference for the
performance of newly developed algorithms (Bourgeau-Chavez et al. 2001; Brisco et al.

Figure 2. Supervised and unsupervised classification techniques and their number of occurrences for
the extraction of FV in the selected studies.

2272 V. TSYGANSKAYA ET AL.



2013b). However, Na et al. (2015) remarked that MLC and KNNC are in general not
suitable for the analysis of high dimensional data, which can constitute a drawback for
the extraction of FV.

The second most common approach used in the reviewed studies (25 of 83) is the
decision tree/rule-based classification (Figure 2), which includes decision tree classifica-
tion (DTC) and hierarchical rule-based classification (HRBC).

Figure 4 shows the number of occurrences of both approaches, where the majority of
studies (20) applied DTC for the extraction of FV (ID 2, 4, 5, 7, 9, 14, 17, 19, 40, 42, 44, 48,
52, 60, 69, 70, 72, 73, 78, 79). A decision tree classifier is well adapted for SAR image
classification, because it does not assume a special probability density distribution of the
given input data (Baghdadi et al. 2001; Hess et al. 1995). This algorithm is based on
hierarchical rules representing thresholds used to iteratively split data in more homoge-
neous groups (Richards 2012), which can be easily refined after iterations (Martinez and Le
Toan 2007). The automatic boundary definition constitutes an advantage because manu-
ally determining thresholds, especially for separation of FV to other classes, can be a
complex process. A further advantage of decision trees is their flexibility and robustness
regarding nonlinear and noisy relations among input features (Townsend 2002; Friedl und
Brodley 1997; Na et al. 2015). This is a benefit for the detection of FV, because of the

Figure 3. Categorization of distance-based classifications and their number of occurrences for the
extraction of FV in the selected studies.

Figure 4. Decision tree and hierarchical rule-based classifications and their number of occurrences
for the extraction of FV in the selected studies.
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diversity of the applied input data for its extraction. Additionally, DTC requires less time for
training in comparison to machine-learning algorithms (e.g. artificial neural networks
[ANNs], Support Vector Machine) (Na et al. 2015).

Three studies used the HRBC for the extraction of FV (ID 27, 28, 29, 37, 47), in which
the classification rules are designed by users based on their knowledge and expertise
and can be iteratively changed depending on the results of the classification process.
Therefore, specific characteristics of FV can be systematically integrated into the rule set.
The transparency of this approach ensures that this knowledge can be used as basis for
further studies and decisions. Furthermore, HRBC allows adding new rules or data sets
without altering the predefined rules, while distance-based methods, such as MLC, may
change all classes’ rules due to additionally added information (Evans et al. 2010).

Several studies (15 of 83) used machine-learning techniques for the extraction of FV
(Figure 2). Figure 5 shows various machine-learning techniques which were applied in
the reviewed studies and their number of occurrences.

The majority of these techniques (11 of 15) is represented by the Random forest
classification (RFC) (ID 10, 18, 24, 32, 35, 46, 53, 54, 66, 81, 82). RFC is an ensemble
classifier containing multiple decision trees and consequently, the aforementioned
advantages of DTC also shared by RFC. By averaging multiple decision trees, the usual
overfitting of each decision tree can be reduced (Richards 2012). This algorithm effi-
ciently determines the contribution of diverse information to a classification. However,
the application of different information types without the understanding of the true
relations within this information can also constitute a disadvantage. For instance, SAR
data can be rated less important due to a better correlation of optical data with other
features for the extraction of FV. In this particular case, RDF may ignore the context and
set the priority to the highest correlated data. Furthermore, a large set of reference data
is needed to mitigate misclassification caused by natural variability within FV (Robertson,
King, and Davies 2015).

Support Vector Machine (SVM) classification, which is used in three studies (ID 5, 6,
13), aims to separate two different classes by determining the maximum-margin hyper-
planes for a given training set. SVMs are intended for the determination of the best
linear separation between two categories within a new feature space. Moreover, the
SVM classification is suitable for high-dimensional data even though limited training
data are available (Richards 2012), which is often the case when working with FV.

Figure 5. Machine-learning techniques and their number of occurrences for the extraction of FV in
the selected studies.
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A single study (ID 3) applied ANNs. This machine-learning algorithm is inspired by the
neural structure of the human brain (Richards 2012). A huge disadvantage of this
method is the fact that a large sample set is required to provide an effective training
of the model. This in return could result in a high computation time. Nevertheless, ANN
has demonstrated several advantages for image classification. Various heterogeneous
data sources (e.g. temperature, SAR intensities, soil moisture level) can be combined as
input. In addition, the algorithm works without any assumption about the distribution of
the data (Augusteijn und Warrender 1998). As discussed above, both advantages are
beneficial for the extraction of FV.

A fuzzy logic-based approach was applied in five studies (ID 34, 45, 55, 62, 63) to deal
with the ambiguities of the SAR signature and to integrate different sources of informa-
tion, such as SAR BI, elevation distance to open flood areas, and neighbourhood
relationships between pixels. This constitutes an advantage regarding the extraction of
FV. In classical set theory, an element may or may not belong to a set, as against in a
fuzzy set, where all elements have different degrees of membership (Buckley und Eslami
2002). The selection of an appropriate membership function to build up a fuzzy set is
subjective and it depends on the task and the available data. It can be challenging to
locate FV in transition zones between open water and upland in SAR images due to their
variations over the time (Wang 2004). Fuzzy logic has the ability to overcome these
uncertainties by describing the increase of backscatter induced by FV using membership
functions without crisp thresholds.

Another supervised method for the extraction of FV is the MTA used in 13 studies (ID
11, 15, 16, 30, 31, 33, 38, 39, 41, 64, 65, 76, 83). Defining the threshold value is a crucial
point as environmental and sensor parameters show strong mutual dependencies. The
threshold for FV has to be individually determined for each study area and is therefore
non-transferable towards other regions. However, this method provides the ability to
separate between FV and other classes quickly and without much effort, for example
using histogram thresholding (ID 42, 76).

In contrast, Otsu’s (Otsu 1979) and Kittler and Illingworth’s (Kittler und Illingworth
1986) thresholding methods represent unsupervised classification techniques which
automatically perform histogram shape-based thresholding (ID 45, 62, 63). A fast classi-
fication of clearly separable classes and therefore the creation of a quick overview of the
existing classes are great benefits of automatic thresholding techniques. However, the
separation between FV and non-FV is challenging due to the wide range of values within
both categories that may lead to overlapping histograms. Therefore, the automatic
thresholding technique is usually only applied as part of a processing chain for the
extraction of FV.

Markov random fields (MRFs) are commonly used as part of an image classification
processes and include various types of contextual information (e.g. spatial, hierarchical,
and temporal). The knowledge about the dependencies between neighboured pixels
reveals the connections within the data providing a more appropriate basis for image
classification in contrast to the consideration of isolated pixels (Li 2001). This helps to
overcome challenges regarding the heterogeneity and phenological changes within FV
classes. Martinis and Twele (2010) and Maillard, Alencar-Silva, and Clausi (2008) adapted
MRFs within a process chain for the classification of FV among other classes (ID 43, 45).

INTERNATIONAL JOURNAL OF REMOTE SENSING 2275



Amongst the vast number of classification approaches to extract FV from SAR data,
image clustering was used in seven studies (ID 1, 36, 52, 58, 59, 61, 68). The number of
occurrences of different image clustering techniques in the reviewed studies is demon-
strated in Figure 6. Image clustering is used to identify relationships within the data
without any previous information (trainings sets) by dividing image elements into groups
containing same or similar properties (spatial and/or temporal). Image clustering leads to a
reduction of the elements to be studied and therefore provides an appropriate basis for
further analysis. Furthermore, grouping of elements constitutes an advantage for the
extraction of FV by means of SAR data, because speckle noise can be compensated and
variation within FV as well as phenological changes can be considered.

k-Means (ID 61), k-medoids (ID 68), and ISODATA (ID 1, 52, 58, 59) are iterative,
non-hierarchical clustering techniques of similar design. While k-means uses centroids
for the determination of cluster centres, k-medoids uses medoids, which makes this
algorithm more stable towards outliers. Both algorithms calculate a predefined num-
ber of clusters, even though fewer clusters might describe the data more accurately
(Park und Jun 2009; Richards 2012). This disadvantage is overcome by ISODATA,
which automatically merges similar clusters and splits clusters with large standard
deviation during the iteration process. An iterative clustering algorithm based on the
Mahalanobis distance was performed by Hess (2003) for the extraction of flooded
forest and wetland types (ID 36).

Wishart H/α and H/A/α unsupervised classifications were performed by two studies
(ID 17, 50). These algorithms, especially designed for decomposed SAR data, require PP,
which can be obtained by decomposition (see Section 4.1.2) of dual- or quad-polarised
SAR data. Morandeira et al. (2016) applied these classifications to increase expertise on
the backscatter response of herbaceous wetlands (ID 50).

A few studies provided a comparison of the accuracies of the results for different
classification approaches, which were implemented based on the same constellation of
data sets for each study. In order to give an idea of the range of performance statistics
and to demonstrate the accuracies for various algorithms, the corresponding accuracies
are summarized in the following. Chen et al. (2014) compared the accuracies of the
results for wetland vegetation of three different classification approaches: Wishard

Figure 6. Image clustering techniques and their number of occurrences for the extraction of FV in
the selected studies.
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classification (PA: 95%, UA: 73%), KNNC (PA: 94%, UA: 78%), DTC (PA: 94%, UA: 80%).
Whereby, DTC results in slightly better UA and similar or slightly worse PA compared to
both others. Betbeder et al. (2014) used only the kappa index to indicate the accuracy
for a study side including FV with different classification algorithm (KNNC: 0.74, DTC:
0.66, SVM using a Gaussian kernel: 0.85). The UA: 75%, PA: 90%, OA: 85% for FV were
only demonstrated for SVM classifier. Na et al. (2015) showed that the results of forested
and herbaceous wetlands extracted by RFC (UA: 81%, PA: 83%) outperform the results of
KNNC (UA: 65%, PA: 35%).

4.3. Pixel- and segment-based image classifications

The classification techniques can be categorized in pixel- and segment based. In the
traditional pixel-based method, each pixel of an image is classified separately, disregard-
ing any neighbourhood relationships. By contrast, the segment-based image classifica-
tion approach uses segmentation techniques to group the pixels according to their
properties, such as spectral values, grey scales, texture features, or other characteristics
(Mishra et al. 2016). Thereafter, the resulting segments can be classified into different
land-cover features depending on the task.

Although the pixel-based approach is the most commonly used method for the
extraction of FV, it may not be suitable to map heterogeneous features, such as FV, if
the spatial resolution of the SAR data is finer than the objects on the ground. In this
case, textural features can provide information corresponding more to FV objects and
result in higher classification accuracy (Pulvirenti et al. 2011a). In contrast to pixel-based
approaches, segments constitute an intuitive depiction of physical objects on the
ground and allow the identification of semantic relationships. The identification of
segments or regions of similar backscatter values enables these approaches to overcome
the speckle noise (Hess 2003; Pulvirenti et al. 2011a). Segments are characterized by
their spectral values or grey values, texture, shape, size, their neighbourhood relations,
and other properties. For the extraction of FV, the texture is the most often used feature
to perform a segmentation of image elements. The texture features enhance angular
structures (e.g. edges) and provide information about the surfaces heterogeneity (Mishra
et al. 2016). Different data sources can be combined by segments rather than by pixels
due to their independence of spatial or spectral resolution (Evans et al. 2010).

In the literature, several segmentation techniques were applied to group the image
elements for the extraction of FV. One of the well-known and commonly used segmen-
tation techniques is the multiresolution segmentation. The pairwise comparison of pixel
neighbours aims to minimize the heterogeneity of the resulting objects. The segmenta-
tion parameters of multiresolution segmentation have to be defined by the user, based
on their knowledge and expertise, depending on the specific task. However, there is no
consistent method to define the most appropriate segmentation parameter. Therefore,
empirical investigations based on previous studies is necessary (Na et al. 2015;
Robertson, King, and Davies 2015). Further techniques, such as Mallat’s discrete wavelet
transform (ID 69, 70) or Markov Random Fields (ID 43, 45), were used as a segmentation
step. Commonly, the segmentation step is followed by the classification of the obtained
segments applying a DTC (ID 2, 17, 19, 52, 69, 79) or a hierarchical rule-based approach
(ID 27, 28, 29, 37).
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Figure 7 shows the distribution of studies using either pixel- or segment-based
classification. The majority of studies (58 of 83) applied the classification at the pixel-
based scale (ID 1, 2–16, 18, 23–26, 31, 33, 35, 36, 38–42, 44, 47–51, 53–56, 58–60, 62, 64,
65, 67, 68, 70–83). The segment-based classification was performed in 23 studies (ID 2,
17, 19–22, 27–30, 32, 34, 37, 43, 45, 46, 52, 57, 61, 63, 66, 69, 79).

Three of these studies used both, pixel and segment level, to provide a comparison
between the classification accuracy of the classification results (ID 17, 54, 80). A slight
increase in the accuracy for FV in wetland areas was shown by Chen et al. (2014), by the
application of an object-based approach (UA: 94%, PA: 81%) in comparison to a pixel-
based approach (UA: 92%, PA: 77%). Na et al. (2015) demonstrated that the object-based
classification (UA: 81%, PA: 83%) exceeds the pixel-based classification (UA: 67%, PA: 67%)
for FV with the corresponding kappa index increasing from 0.7 to 0.8 (ID 54). Westra et al.
(2010) presented the comparison between kappa values for pixel- (0.86) and for segment-
based (0.83) approaches, which were carried out with different classification algorithms
(MLC and KNNC). This may be the explanation for a decrease in kappa, which might not
be affected by the application of pixel- and segment-based approaches. Therefore, these
results are not comparable. Overall, the presumption can be made that the trend is
towards segment-based approaches due to their higher accuracies.

4.4. Approaches depending on the number of applied images in combination
with SAR-derived information

For the detection of FV, the aforementioned algorithms were applied on SAR data sets
with a different number of images. Depending on the available number of SAR images,
the selected studies can be categorized into four different approaches: single date,
change detection, order-independent multi-date, and time-series approach (Figure 8),
where more than one approach can occur in a single study. Furthermore, each category
contains different SAR-derived information (BI, PP, and IC or their combination) (Section
4.3). There is a huge difference in the amount of the studies that performed a single date
approach in comparison to those that performed multi-date approaches (change detec-
tion, order-independent multi-date, and time-series approach) using more than one
image (52 vs 14, 52 vs 11, 52 vs six studies, respectively).

For the detection of FV, the single-date approach is a common method, in which the
information of only one image for a current situation on the ground is considered. Despite
these restrictions, the single-date approach is applied in 52 studies (ID 2–4, 12–14, 16, 17,

Figure 7. Pixel- and segment-based classification techniques and their number of occurrences for
the extraction of FV in the selected studies.
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19–30, 32, 34, 35, 37, 40, 41, 43, 46, 48–50, 52–54, 56–58, 65–67, 70–76, 78–82). Land-cover
maps, digital elevation models, or optical data are often used as auxiliary information to
complement a single SAR date and to overcome the similarity within the BI as well as to
improve the separability between FV and other classes (e.g. ID 27, 54, 72, 76). The more
advanced SAR systems enable the acquisition of dual- or quad-polarised data providing
extended information content in comparison to single-polarised data. In this case, ratios of
the available polarisations or PP can be applied still considering only a single date. Despite
this advantage, three of 52 single date approaches used PP to extract FV (ID 12, 13, 50) and
four of 52 single-date approaches used both BI and PP (ID 32, 35, 66, 82). A single date only
represents a snapshot of a current situations status and is therefore insufficient to detect
potential changes over time.

The application of images acquired at multiple dates (two or more) may reveal the
location and the extent of FV depending on the condition of their acquisition.

The reviewed studies using multiple dates can be categorized into change detection
approach, order-independent multi-date approach, and time-series approach.

The change detection approach usually uses two images, acquired under dry and wet
conditions, which enables to consider changes between two dates. Thereby, a change
image is calculated based on the BI by the subtraction of each corresponding image
element (pixel) in both images (Schumann, Di Baldassarre, and Bates 2009). The tem-
poral change is often measured by the ratio of backscatter intensities between two
dates rather than by the difference of intensities (Bouvet und Le Toan 2011). This
difference between absolute backscatter intensities produces larger classification errors
in regions with high backscatter than in regions with low backscatter. The ratio only
depends on the relative change between two dates in SAR imagery and does not
depend on the intensity level of the pixels (Rignot und van Zyl 1993). Fourteen studies
demonstrated the applicability of the change detection approach for the extraction of

Figure 8. Summary of temporal frequency-related approaches combined with SAR-related information.
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FV (ID 7, 10, 11, 31, 33, 39, 42, 45, 55, 60, 62, 64, 69, 77). Despite the advantage to detect
changes between two images, the application of a change detection approach usually
requires manual intervention for the selection of appropriate images. This selection of a
scene acquired under dry conditions is critical because of the high variability in back-
scatter for FV depending on the environmental conditions (see Section 3.4). In addition
to BI, the change detection approach was conducted based on PP (ID 33) and on the
combination of BI values with IC information (ID 64).

Several studies applied multi-temporal information without the direct consideration of
changes between dates in advance (ID 8, 9, 18, 36, 44, 47, 59, 83), whereby two or more
acquisition dates were taken into account. In this review, these methods are summarized as
order-independent multi-date approach. This approach allows the integration of different
acquisition dates without knowledge about their temporal sequence. Nevertheless, it is
common to integrate data from various seasons (e.g. dry and wet). Especially in the field of
wetland monitoring, this approach is very popular, because different types of FV can occur
during different seasons. Typical classification algorithms used in this approach are decision
tree, random forest, or Support Vector Machine. Because additional information can easily
be integrated, the information of PP (ID 5, 6, 18) and of IC (ID 83) were increasingly applied
compared to the other three approaches discussed in this section.

The time series approach may be an appropriate solution allowing a sequential
extraction of changes over time for the investigation of FV, considering seasonal or
annual fluctuations of the individual vegetation types. Similar to the order-independent
multi-date approach, the time series approach enables the improvement of the relia-
bility for mapping FV areas as a consequence of multiple observations of the same area.
Furthermore, the flood evolution in FV areas within an inundation event can be ana-
lysed. More details can be extracted by the shape of temporal profiles, which consider
the effects of phenology and flooding and consequently enable a superior separation
between FV and other classes (Betbeder et al. 2014). Overall, six studies performed the
time series approach for extraction of FV. Thereby, five studies are based on BI values (ID
15, 38, 61, 63, 68); however, only one used PP as a foundation information (ID 51).
Depending on the available number of SAR images, the information content can
significantly increase. Martinez and Le Toan (2007) remarked that the improvement of
FV accuracy depends not only on the higher number of scenes but also on the regularity
of data acquisition. The complexity of analysis and processing of SAR data can consider-
ably increase with the number of available images causing challenges in the extraction
of the required information. The per-pixel analysis of backscatter time series can be CPU
intensive and time consuming. In case of flood monitoring, where near real-time
information is required, these characteristics may constitute a drawback. Nevertheless,
several studies show benefits of the application of a time series approach. Pulvirenti
et al. (2011a) demonstrated flood evolution mapping within FV by defining multi-
temporal FV classes containing different stages of flood duration. Thereby, the definition
of the classes was performed using multi-temporal profiles. For the extraction of the
dynamics of FV, Moser et al. (2016) performed a multi-temporal classification on a stack
of time-series data. Hidayat et al. (2012) calculated range, mean change, and standard
deviation images using the temporal information from 20 SAR scenes. Schlaffer et al.
(2016) recently introduced a harmonic model approach suitable for ENVISAT
(Environmental Satellite) ASAR (advanced SAR) time-series data. This approach is
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appropriate for modelling seasonal backscatter value patterns induced by different
dynamics in wetlands, among others the flood evolution in vegetated areas. The
harmonic model approach requires a time-series length of at least one seasonal cycle
for clear classification of permanent or seasonal FV. This method represents an advanced
time series approach contributing to a more automatic extraction of FV.

A comparison of the accuracy between the single image and multi-temporal approach
is provided in a few of the reviewed studies and is described in the following. Wang et al.
(1998) compared the accuracy of a single-date (51% correctly classified pixels) wetland
classification with different combination of dates (72–85% correctly classified pixels)
showing a clear improvement with higher temporal resolution. Furtado, Silva, and Novo
(2016) demonstrated that the use of dual-season imagery in comparison to a single image
brought the largest improvements in accuracies for flooded forest, among other classes.
PA increased from 49% to 79% and UA increased from 64% to 95%, respectively. Despite
the low accuracy performance reported by Heine, Jagdhuber, and Itzerott (2016), the best
accuracy acquired from single-date classification (36% correctly classified proportion) was
improved using multi-temporal data (45% correctly classified proportion). Zhao et al.
(2014) showed that the accuracy classification of FV is improved by using multi date
(PA: 97%, UA: 99%) in respect to single dates (PA: 80–92%, UA: 80–95%). Overall, an
increase in accuracy using multi-date data instead of single images is reported, which can
be explained by the increased information content including the seasonal stages of the
plants. Thereby, the selection of specific dates constitutes the decisive factor and not
necessarily their increased number Martinez and Le Toan (2007).

5. Conclusion

This review provides the current state of the art regarding the detection and extraction
of FV based on 128 studies. An overview of the interaction between sensor character-
istics and environmental conditions, and their effects on the SAR signal, is given. In
addition, various SAR data sets and classification algorithms, as well as their benefits and
limitations for the extraction of FV, are described.

As reported in earlier research reviews, longer wavelengths are still suggested for the
detection of flooded forests. However, L-band and C-band can be used, both combined or
individually, to separate between flooded forest, flooded herbaceous vegetation, and dry land
classes. Current research also demonstrates the ability of X-band to detect FV in case of low
biomass or leaf-off conditions. For thedetectionof FV, HH is preferredover VV and co-polarised
in general over cross-polarised data. However, both are applied to discriminate between
different FV types. Inhomogeneous statements were given about the application of polarisa-
tion ratios. Nevertheless, multi-polarised data were found to be valuable due to enhanced
information content in comparison to single polarised data. Steeper incidence angles are still
preferred over shallow ones. However, a few studies suggest that the detection of flood
beneath forests with increasing incident angles is less limited than expected.

Besides sensor characteristics, the backscatter signature of FV is strongly affected by the
environmental conditions and their characteristics. It was shown that the amount of the
aboveground biomass is critical for the detection of FV. Therefore, saturation points of the
SAR signal were determined, where the biomass increases and the water underneath the
vegetation can no longer be detected. It was established that the location of the saturation
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point is strongly influenced by sensor characteristics and depends on the vegetation type.
Furthermore, advanced analysis of the relation between the water depth and the height of
the plants has been conducted and their importance for the detection of flood in agricul-
tural and herbaceous areas has been emphasized in several studies.

With technological advances, an increase in the variety of SAR data sets and classi-
fication algorithms has taken. BI using different polarisations is a proved basis for the
extraction of FV. However, the application of PPs based on quad- or even dual-polarised
SAR data leads to promising results. This is because of their increased information
content and their ability to describe physical objects. Depending on the SAR data,
various decomposition techniques were introduced for the extraction of PPs. In parti-
cular, the decomposition of dual-polarised data, which constitutes a compromise
between information content, calculation complexity, and general availability, will pro-
vide a valuable foundation for future studies (Moser et al. 2016; Schmitt et al. 2012). IC is
comparatively novel SAR-derived information which, although limited by its demanding
requirements, can be beneficial as complementary information for BI (Pulvirenti et al.
2016) and reduce the need for external data (Chini et al. 2016).

The reviewed studies show some inconsistency in the application of classification
algorithms used for the extraction of FV. This can be explained by the wide variety of the
underlying data, which is often depending on the specific task but is mostly restricted by
its availability. Thereby, the comparability of the results can be inhibited. A wide range
of different classification techniques were applied in the studies, spanning from basic
thresholding approaches to more complex algorithms like machine learning. A selection
of a suitable algorithm for a certain task can be crucial for a successful classification and
strongly depends on the applied data. With the increasing availability of data, due to a
more continuous acquisition by SAR systems, such as Sentinel-1, current and prospective
algorithms need to be examined in regards to their usability to extract FV. Although an
increased utilization of the random forest algorithm can be noticed for wetland obser-
vations, no general trend was identified for the extraction of FV from SAR data. Even
though unsupervised algorithms are applied within multiple process chains, still no
completely unsupervised method exists that focuses on the extraction of FV.

The use of segmentation leads to more reliable results than pixel-based approaches,
because it is less prone to speckle noise. Furthermore, segment-based approaches appear
to be valuable alternatives, providing a depiction of real objects on the ground, mitigating
the increasing heterogeneity of classes in high-resolution satellite imagery. Because of its
potential, the segment-based approach should be more utilized for the detection of FV.

Single-image approaches are still preferred and are mostly used in combination with
ancillary data, such as optical or elevation information, to describe land-cover types containing
FV. The usage of multi-date SAR data sets seems to be attractive for wetland monitoring
because it includes seasonal information. The comparisons between single and multi-date
approaches within studies show an improvement in classification results. Short revisit times
and systematic data acquisitions by satellite missions, such as Sentinel-1 (Aulard-Macler 2011)
and Tandem-L (German Aerospace Center 2017), pave the way for the application of time
series approaches which are already implemented, especially for flood monitoring (Schlaffer
et al. 2016). Continuing efforts in the analysis of long-term profiles would expand the under-
standing about the seasonal and annual variability and enable the development of fully
automated and potentially transferable processes for the extraction of FV.
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